Точка зрения, более или менее соответствующая духу трактовки температуры черной дыры Хокинга, заключается в том, что для ее определения мы должны использовать ускорение наблюдателя, «висящего» в непосредственной близости от горизонта черной дыры, но затем уменьшить это значение температуры на коэффициент гравитационного красного смещения, испытываемого этим наблюдателем. Такой взгляд в наибольшей степени соответствует хокинговской процедуре вычисления температуры. Давайте шаг за шагом рассмотрим эту процедуру для случая шварцшильдовской черной дыры. Говоря о «парящем» или «подвешенном» наблюдателе, мы имеем в виду такого, который остается на фиксированном радиусе над горизонтом, но при этом не совершает орбитального движения вокруг черной дыры. Для того чтобы этого добиться, этому статическому наблюдателю – назовем ее Анной – придется постоянно отталкиваться от черной дыры, к примеру, при помощи ракетного двигателя. Если Анна пользуется только своей локальной геометрией, то принцип эквивалентности говорит ей, что она не сможет отличить ее от плоского пространства, через которое она движется с постоянным ускорением. Чем ближе Анна к фактическому горизонту черной дыры, тем большим становится это видимое ускорение. В соответствии с вычислениями Унру, Анна будет ощущать температуру, равную своему ускорению, деленному на 2π. Похоже, мы снова оказываемся в той же ловушке: ощущаемая наблюдателем температура зависит от его положения. Выход из этого тупика в том, что Анна также испытывает и значительное гравитационное красное смещение по сравнению с другим наблюдателем – назовем его Барт, – который держится от черной дыры на почтительном расстоянии. (В данном контексте это значит, что расстояние от Барта до черной дыры многократно превышает радиус Шварцшильда.) Чем ближе будет Анна к горизонту, тем выше будет ей казаться температура Унру. Но то, что ее гравитационное красное смещение возрастает, означает, что к тому моменту, как видимое Анной излучение выкарабкается из гравитационного поля черной дыры и достигнет Барта, оно будет соответствовать конечной температуре, которая не будет изменяться по мере того, как Анна будет приближаться к горизонту. Эта конечная температура и есть температура Хокинга, и, умножая ее на 2π, мы получим величину, называемую
Выше мы говорили, что выбрали численные величины для иллюстрации эффекта Унру с определенной целью. Дело в том, что ускорение Алисы, в полтора триллиона раз превышающее гравитационное ускорение на Земле, как раз равно поверхностному тяготению на горизонте черной дыры с массой Солнца. Соответственно, и хокинговская температура этой черной дыры такая же, как ощущаемая Алисой температура Унру: 60 нанокельвинов. У больших черных дыр температуры будут меньше: они обратно пропорциональны массе.
Говоря о температуре Унру, подчеркнем тот факт, что инерциальный наблюдатель в далеком будущем (как помните, мы назвали ее Кэрол) обладал бы полной квантовой истиной: что квантовое состояние пространства-времени в целом представляет собой вакуум без каких-либо возбуждений. Тепловое состояние Алисы включает в себя положительные энергетические возмущения, квантово-механически запутанные с отрицательными возмущениями в области пространства-времени, которую она воспринимать не может. Оказывается, что аналогичная ситуация возникает и в случае излучения Хокинга, однако с некоторыми существенными отличиями.
Рис. 7.2.
Схема возникновения излучения Хокинга. Анну, остающуюся на фиксированном радиусе у горизонта, можно считать ускоряющимся наблюдателем, так как она испытывает гравитационное притяжение черной дыры. Она видит излучение по тем же причинам, по которым возникает эффект Унру. Это излучение на своем пути наружу к Барту подвергается гравитационному красному смещению. Барт, так же как и Анна, находится в стационарном состоянии, но он настолько далеко от черной дыры, что едва ли чувствует ее притяжение. Падающий в черную дыру извне наблюдатель Брюс при пересечении горизонта не видит излучения Хокинга.