Читаем Маленькая книга о чёрных дырах полностью

Точка зрения, более или менее соответствующая духу трактовки температуры черной дыры Хокинга, заключается в том, что для ее определения мы должны использовать ускорение наблюдателя, «висящего» в непосредственной близости от горизонта черной дыры, но затем уменьшить это значение температуры на коэффициент гравитационного красного смещения, испытываемого этим наблюдателем. Такой взгляд в наибольшей степени соответствует хокинговской процедуре вычисления температуры. Давайте шаг за шагом рассмотрим эту процедуру для случая шварцшильдовской черной дыры. Говоря о «парящем» или «подвешенном» наблюдателе, мы имеем в виду такого, который остается на фиксированном радиусе над горизонтом, но при этом не совершает орбитального движения вокруг черной дыры. Для того чтобы этого добиться, этому статическому наблюдателю – назовем ее Анной – придется постоянно отталкиваться от черной дыры, к примеру, при помощи ракетного двигателя. Если Анна пользуется только своей локальной геометрией, то принцип эквивалентности говорит ей, что она не сможет отличить ее от плоского пространства, через которое она движется с постоянным ускорением. Чем ближе Анна к фактическому горизонту черной дыры, тем большим становится это видимое ускорение. В соответствии с вычислениями Унру, Анна будет ощущать температуру, равную своему ускорению, деленному на 2π. Похоже, мы снова оказываемся в той же ловушке: ощущаемая наблюдателем температура зависит от его положения. Выход из этого тупика в том, что Анна также испытывает и значительное гравитационное красное смещение по сравнению с другим наблюдателем – назовем его Барт, – который держится от черной дыры на почтительном расстоянии. (В данном контексте это значит, что расстояние от Барта до черной дыры многократно превышает радиус Шварцшильда.) Чем ближе будет Анна к горизонту, тем выше будет ей казаться температура Унру. Но то, что ее гравитационное красное смещение возрастает, означает, что к тому моменту, как видимое Анной излучение выкарабкается из гравитационного поля черной дыры и достигнет Барта, оно будет соответствовать конечной температуре, которая не будет изменяться по мере того, как Анна будет приближаться к горизонту. Эта конечная температура и есть температура Хокинга, и, умножая ее на 2π, мы получим величину, называемую поверхностным тяготением черной дыры, – это ускорение, которое бы понадобилось испытать Алисе в плоском пространстве, чтобы почувствовать такую же температуру излучения Унру, как температура излучения Хокинга, которую чувствует Барт[22].

Выше мы говорили, что выбрали численные величины для иллюстрации эффекта Унру с определенной целью. Дело в том, что ускорение Алисы, в полтора триллиона раз превышающее гравитационное ускорение на Земле, как раз равно поверхностному тяготению на горизонте черной дыры с массой Солнца. Соответственно, и хокинговская температура этой черной дыры такая же, как ощущаемая Алисой температура Унру: 60 нанокельвинов. У больших черных дыр температуры будут меньше: они обратно пропорциональны массе.

Говоря о температуре Унру, подчеркнем тот факт, что инерциальный наблюдатель в далеком будущем (как помните, мы назвали ее Кэрол) обладал бы полной квантовой истиной: что квантовое состояние пространства-времени в целом представляет собой вакуум без каких-либо возбуждений. Тепловое состояние Алисы включает в себя положительные энергетические возмущения, квантово-механически запутанные с отрицательными возмущениями в области пространства-времени, которую она воспринимать не может. Оказывается, что аналогичная ситуация возникает и в случае излучения Хокинга, однако с некоторыми существенными отличиями.


Рис. 7.2. Схема возникновения излучения Хокинга. Анну, остающуюся на фиксированном радиусе у горизонта, можно считать ускоряющимся наблюдателем, так как она испытывает гравитационное притяжение черной дыры. Она видит излучение по тем же причинам, по которым возникает эффект Унру. Это излучение на своем пути наружу к Барту подвергается гравитационному красному смещению. Барт, так же как и Анна, находится в стационарном состоянии, но он настолько далеко от черной дыры, что едва ли чувствует ее притяжение. Падающий в черную дыру извне наблюдатель Брюс при пересечении горизонта не видит излучения Хокинга.


Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука