Хотя это несложно для внутренних источников данных, использование идентификационного номера клиента для внешних источников данных – это сложная, пусть и выполнимая задача. Например, данные из социальных сетей могут быть интегрированы с клиентским идентификационным номером и данными о покупках, если покупатель заходит на сайты торговой площадки через аккаунты в социальных сетях. Другой пример интеграции данных – это использование приложений программ лояльности для соединения с умными радио и сенсорными устройствами. Когда бы ни был покупатель с мобильным телефоном вблизи сенсора, например, около полки в розничном магазине, сенсор записывает движение. Это полезно для отслеживания пути клиента в физических торговых объектах.
Однако иногда невозможно все привязать к индивидуальным идентификационным номерам клиента, в основном из-за опасений в области безопасности. Компромиссное решение – использовать отдельные переменные демографической сегментации как общий знаменатель. Например, название сегмента «покупатель – мужчина от 18 до 34 лет» может быть уникальным обозначением для консолидации каждой точки информации из источника данных о соответствующей демографической группе.
Каждый динамический набор данных должен храниться на единой платформе управления данными, которая позволяет маркетологам собирать, хранить, управлять и анализировать данные в полном объеме. Любые новые проекты основанного на данных маркетинга с новыми целями должны использовать ту же платформу, способствуя обогащению экосистемы данных, что будет полезно, если компания решит использовать машинное обучение для автоматизации анализа.
Резюме: создание экосистемы данных для улучшения таргетирования
Рост использования больших данных изменил облик рыночной сегментации и таргетирования. Ширина и глубина клиентских данных растет по экспоненте. Данные из медиа, социальных сетей, веб-сайтов, точек продаж, устройств «интернета вещей» и данных по вовлечению – все они могут создать богатый профиль индивидуального покупателя, позволяя маркетологам реализовывать маркетинг «сегмента из одного».
В цифровую эпоху проблема больше не в недостатке данных, а скорее в определении тех данных, которые имеют значение. Именно поэтому управляемый данными маркетинг должен всегда начинаться с постановки конкретных, узконаправленных целей. Опираясь на цели, маркетологи получают актуальные наборы данных и интегрируют их в платформу управления данными, которая соединена с движками аналитики и машинного обучения. Полученные выводы могут приводить к более отточенным маркетинговым предложениям и кампаниям.
Однако никогда не стоит относиться к управляемому данными маркетингу как к ИТ-инициативе. Сильная команда маркетологов-лидеров должна возглавить проект и состыковать ресурсы компании, включая поддержку IT-отдела. Вовлечение каждого маркетолога в организации – необходимое условие, так как управляемый данными маркетинг – это не волшебная палочка и никогда не будет работать на автопилоте.
Подумайте о том, как улучшение системы управления данными может усилить маркетинговые практики в вашей организации. Что может стать легкой победой?
Как вы сегментируете рынок для ваших продуктов и услуг? Создайте дорожную карту для внедрения маркетинга «сегмента из одного» на данных вашей организации.
Глава 9
Предиктивный маркетинг
Предвосхищая рыночный спрос проактивными действиями
По прошествии сезона Главной лиги бейсбола – 2001 бейсбольный клуб «Окленд Атлетикс» потерял трех ключевых игроков из-за их статуса свободных агентов. Под давлением заменить свободных агентов в условиях ограниченного бюджета тогдашний генеральный менеджер Билли Бин обратился к аналитике для сбора сильной команды для следующего сезона. Вместо использования традиционных агентов-скаутов и инсайдерской информации «Атлетикс» использовали саберметрику – аналитику игровой статистики.
С аналитикой в «Атлетикс» обнаружили, что недооцененные показатели, такие как процент попаданий на базу и процент сильных ударов, могли бы предсказывать успех лучше, чем общепринятая статистика нападения. Так как ни одна из других команд не набирает игроков с этими качествами, полученные в результате анализа выводы позволили клубу «Атлетикс» нанять недооцененных игроков за сравнительно небольшие деньги. Эта удивительная история была задокументирована в книге Майкла Льюиса и фильме Беннета Миллера «Moneyball» (в российском прокате фильм «Человек, который изменил все». –