Возможно, вы стремитесь привлечь потенциальных клиентов на сайт, с тем чтобы помочь сравнить различные преимущества продукта, его функциональность и характеристики с другими продуктами или услугами, которые вы продаете. В данном случае речь идет об этапе потребительского цикла – «маркетинге оценки» (см. рис. 3.2). Наблюдение за количеством просмотров определенных страниц с информацией о продукте поможет вам понять, какие элементы сайта работают, а какие – нет. Если вы сопоставите информацию о просмотрах страниц с данными о доле отказов и количестве загрузок материалов с сайта (например, определенных экспертных заключений), сегментированных по различным маркетинговым каналам, то сможете получить полную картину происходящего и понять, эффективен ваш маркетинг или нет.
Здесь, как и в других случаях, прежде всего нужно определить стратегию для своей маркетинговой кампании, а затем разобраться с целями бизнеса. Проще всего измерить все показатели, связанные с сайтом: отслеживание доли отказов в сочетании со специфическими показателями для кампании поможет оценивать происходящее в режиме реального времени. В следующей главе приведен подробный пример того, как это делает Microsoft.
Изменение правил для поискового маркетинга с помощью моделирования атрибуции
Как я уже говорил выше, основная проблема поискового маркетинга – атрибуция. Иными словами, когда пользователи осуществляют поиск, 100 % веса присваивается только последнему клику, который они делают перед покупкой (или который приводит к определенным желательным действиям). На рис. 7.4 отображены конкретные поисковые слова в рамках SEM-кампании, количество генерируемых ими кликов и соответствующий каждому из них доход.
На рис. 7.4 первые три ключевых слова были брендированными (содержали название компании, например «отпуск Expedia» или «выходные Orbitz»). Они обеспечивают примерно 50 % продаж. Стоит отметить, что распределение ключевых слов на рис. 7.4 имеет «длинный хвост»: есть много разных «небрендированных» поисковых слов, вносящих крайне незначительный вклад в продажи. Здесь снова проявляется принцип 80/20: в данном случае 17 % ключевых слов, три из которых были брендированы, внесли минимум 50 %-ный вклад в продажи. Поэтому кажется, что для оптимизации SEM имеет смысл прекратить инвестиции в небрендированные поисковые запросы, не приносящие денег. Однако это ошибочная тактика: предполагается, что основную роль играет именно последний клик. На самом деле нужно выяснить, как потребитель перемещается в поисках вашего продукта и какие небрендированные ключевые слова при этом использует.
Табл. 7.4.
Реальная история перемещений пользователя, желающего купить «горящий тур»В табл. 7.4 указан реальный поток кликов для конкретного пользователя, покупающего туристическую поездку. Обратите внимание, что он использовал в разные дни различные инструменты. Он шесть раз проводил поиск на протяжении трех недель, что в конечном итоге привело к покупке тура на двоих. Данные такого рода можно получать с помощью анализа cookie для отдельных пользователей. Cookie – небольшой файл, располагающийся на компьютере пользователя и хранящий данные о его действиях в интернете. Каждый раз, когда пользователь совершает поиск с использованием определенных слов, информация обновляется. Cookie-файлы активны до 30 дней.
Компания Media Contacts, подразделение Havas[41]
, умеет анализировать данные cookie и сопоставлять уникальный ID пользователя и использованные им для поиска ключевые слова. Таким образом ей удается узнать все подробности перемещений клиента (табл. 7.4) на основании других видов его активности в интернете. В табл. 7.4 последний клик (брендированный поиск через Google) в рамках традиционной модели получил бы 100 % атрибуции для тура ценой 1205 долларов. При этом очевидно, что свою роль сыграли и другие пять поисков. Насколько важную? Для ответа на этот вопрос нужно создать модель атрибуции для поискового маркетинга.Табл. 7.4.
Реальная история перемещений пользователя, желающего купить «горящий тур»