Читаем Математические головоломки профессора Стюарта полностью

Все нечетные целые числа, большие 5, могут быть представлены как сумма нечетного простого числа и удвоенного простого числа (Émile Lemoine, 1894, Hyman Levy, 1963).

Д. Корбитт подтвердил эту гипотезу вплоть до 109.

Гипотезы Мерсенна

В 1644 г. Марен Мерсенн объявил, что числа 2n – 1 являются простыми для n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 и 257 и составными для всех остальных положительных целых n<257. Позже было показано, что Мерсенн допустил пять ошибок: n = 67 и 257 дают составные числа, а n = 61, 89, 107 дают простые. Гипотеза Мерсенна привела к созданию новой гипотезы Мерсенна и гипотезы Ленстры – Померанца – Вагстаффа, которые значатся в нашем перечне следующими.

Новая гипотеза Мерсенна, или гипотеза Бейтмана– Селфриджа – Вагстаффа

Для любого нечетного p если выполняются любые два из следующих условий, то выполняется и третье:

1. p = 2k ± 1 или p = 4k ± 3 для некоторого натурального числа k;

2. число 2p − 1 – простое (простое Мерсенна);

3. число (2p + 1)/3 – простое (простое Вагстаффа).

(Paul Bateman, John Selfridge and Samuel Wagstaff Jr., 1989)

Гипотеза Ленстры – Померанца – Вагстаффа

Существует бесконечное число простых Мерсенна, причем число простых Мерсенна, меньших x, приблизительно равно eγ ln ln x/ln 2, где γ – постоянная Эйлера, приблизительно равная 0,577 (Hendrik Lenstra, Carl Pomerance and Samuel Wagstaff Jr., не опубликовано).

Гипотеза Опперманна

Для любого целого числа n>1 существует по крайней мере одно простое число между n (n – 1) и n² и по крайней мере еще одно простое число между n² и n (n + 1) (Ludvig Henrik Ferdinand Oppermann, 1882).

Гипотеза Полиньяка

Для любого положительного четного n существует бесконечное число пар последовательных простых чисел с разницей в n (Alphonsede Polignac, 1849).

Для n = 2 это утверждение соответствует гипотезе о простых числах-близнецах (см. ниже). Для n = 4 она означает, что существует бесконечно много пар «двоюродных простых чисел» (p, p + 4). Для n = 6 она означает, что существует бесконечно много пар простых чисел (p, p + 6), известных как sexy (от латинского названия числа 6); при этом между числами p и p + 6 простых чисел нет.

Гипотеза Редмонда – Суня

Всякий интервал [xm, yn] (то есть любое множество чисел от xm до yn) содержит по крайней мере одно простое число, за исключением [2³, 3²], [5², 3³], [25, 6²], [11², 5³], [37, 13³], [55, 56²], [181², 215], [43³, 282²], [46³, 312²], [22434², 555] (Stephen Redmond and Zhi-Wei Sun, 2006).

Эта гипотеза подтверждена для всех интервалов [xm, yn] до 10¹².

Вторая гипотеза Харди – Литтлвуда

Если π (x) есть число простых чисел вплоть до x, включая x, то π (x + y) ≤ π (x) + π (y) для x, y ≥ 2 (Godfry Harold Hardy and John Littlewood, 1923).

Существуют технические соображения, согласно которым можно ожидать, что это предположение окажется ложным, но первое нарушение возникнет, скорее всего, при очень больших величинах x, вероятно, больших, чем 1,5 × 10174, но меньших, чем 2,2 × 101198.

Гипотеза о простых числах-близнецах

Существует бесконечно много простых чисел p, таких, что число p + 2 тоже простое.

25 декабря 2011 г. PrimeGrid – «проект распределенных вычислений», в котором используются свободные ресурсы на компьютерах добровольцев, пожелавших принять в нем участие, объявил наибольшую известную на сегодняшний день пару простых чисел-близнецов:


3 756 801 695 685 × 2666 669 ± 1.


Каждое из этих чисел содержит 200 700 знаков.

В интервале до 1018 содержится 808 675 888 577 436 пар простых чисел-близнецов.

Оптимальная пирамида

Стоит подумать о Древнем Египте, и в голову сразу же приходят пирамиды, в первую очередь Великая пирамида Хеопса в Гизе, самая большая из всех, и стоящая рядом с ней пирамида Хефрена, чуть поменьше, и относительно небольшая пирамида Микерина. Известны остатки более чем 36 крупных и сотен более мелких египетских пирамид – от громадных и почти полностью сохранившихся до простых отверстий в земле, содержащих лишь несколько обломков камня от погребальной камеры, а иногда и того меньше.



О форме, размерах и ориентации пирамид написаны огромные тома. Большая часть их содержимого умозрительна; на основе различных численных соотношений выстраиваются весьма амбициозные цепочки рассуждений. Особенно любят исследователи Великую пирамиду: с чем только ее ни связывали – и с золотым сечением, и с числом π, и даже со скоростью света. К подобным рассуждениям возникает столько вопросов, что трудно воспринимать их серьезно: в любом случае данные, на которых они основаны, часто неточны; к тому же с таким количеством измерений и параметров всегда можно подобрать нужную комбинацию.

Перейти на страницу:

Похожие книги