Промежутки между простыми числами
Вспомним, что натуральное число считается
Вот первые несколько простых чисел:
2 3 5 7 11 13 17 19 23 29 31 37.
Вообще, простых чисел бесконечно много, и они неравномерно распределены по всему множеству натуральных чисел. На протяжении долгого времени простые числа были гигантским источником вдохновения для математиков, и многие их загадки этих чисел с течением времени были решены. А многие другие по-прежнему сохраняют тайну.
В 2013 г. специалисты по теории чисел добились неожиданного прогресса в отношении двух великих загадок, связанных с простыми числами. Первая из них относится к промежуткам между последовательными простыми числами, и я расскажу о ней сейчас. Вторая последует чуть позже.
Все простые числа, за исключением числа 2, нечетные (поскольку все четные числа по определению кратны двум), поэтому два последовательных числа (за исключением пары 2, 3) не могут оба быть простыми. Однако два числа, различающиеся на 2, могут: например, пары (3, 5), (5, 7), (11, 13), (17, 19); несложно найти и еще варианты. Такие пары простых чисел называются
Предположение о том, что существует бесконечное число пар простых чисел-близнецов, высказано давно, но до сих пор не доказано. До недавнего времени прогресс в этом вопросе был минимальным, но в 2013 г. Чжан Итан поразил математический мир заявлением о том, что он мог бы доказать, что существует бесконечное число пар простых чисел, которые различаются между собой не более чем на 70 млн. После этого его статья была принята к публикации ведущим журналом теоретической математики
Сегодня математики все чаще пользуются Интернетом, чтобы объединить силы в работе над какой-нибудь задачей, и Теренс Тао организовал коллаборацию, целью которой стало снижение числа 70 млн до чего-нибудь поменьше. Он сделал это в рамках проекта Polymath – системы, созданной для содействия работам такого рода. По мере того как математики лучше понимали методы Чжана, число сдавалось. Джеймс Мэйнард снизил число 70 млн до 600 (и даже до 12, если принять еще одно предположение, известное как гипотеза Эллиота – Халберстама). К концу 2013 г. новые идеи Мэйнарда снизили это число до 270.
Проблема Гольдбаха для нечетных
Вторая загадка, связанная с простыми числами и нашедшая, наконец, решение (вероятно!), восходит к 1742 г., когда немецкий математик-любитель Христиан Гольдбах написал Леонарду Эйлеру письмо, содержавшее несколько наблюдений над простыми числами. Одно из них выглядело так: «Любое целое число, большее 2, можно записать как сумму трех простых чисел». Эйлер тогда вспомнил предыдущую беседу, в которой Гольдбах сделал родственное предположение: «Любое четное целое число есть сумма двух простых чисел».