– Эти дополнительные числа достаются нам бесплатно и существенно облегчают задачу. Но вот интересно… – его голос почти затих.
– Что интересно, Сомс?
– Интересно, как далеко можно продвинуться, если использовать четыре
Внутренне я ликовал, поскольку в нем явно пробудился интерес. А вслух сказал:
– Да, я понимаю. Теперь √1 = 1 и 1! = 1, так что «бесплатно» ничего не возникает. Это усложняет задачу, но делает ее, возможно, более достойной нашего внимания.
Он хмыкнул, и я поспешил реализовать свое крохотное преимущество. Лучший способ заинтересовать Сомса состоит в том, чтобы попробовать решить задачу самостоятельно и потерпеть неудачу.
– Понятно, что 1 = 1 × 1 × 1 × 1,
а также
2 = (1 + 1) × 1 × 1,
3 = (1 + 1 + 1) × 1,
4 = 1 + 1 + 1 + 1,
но выражение для 5 мне уже не дается.
Сомс поднял одну бровь.
– Вы могли бы рассмотреть выражение
5 = (1/0,1)/(1 + 1).
– Хм, хитро! – воскликнул я, но Сомс только фыркнул. – Но как насчет 6? – продолжал я. – Я вижу, как получить шестерку с использованием факториала:
6 = (1 + 1 + 1)! × 1.
На самом деле мне нужны только три единицы, но от всех лишних легко избавиться посредством умножения на них.
– Элементарно, – пробормотал он. – А рассматривали ли вы такой вариант, Ватсап?
если вы настаиваете на использовании факториалов. Разумеется, чтобы использовать все четыре единицы, вы можете умножить на 1 × 1, или на 1/1, или прибавить 1–1.
Я непонимающе воззрился на формулу.
– Я узнаю десятичную точку, Сомс, но что означают скобки вокруг 1?
– Период, – ответил Сомс устало. – Нуль запятая 1 в периоде соответствует 0,11111… до бесконечности. Единица в периоде дает число, равное
– А дальше 3 + 3 = 6, – возбужденно вскричал я. – И еще, конечно,
7 = (1 + 1 + 1)! + 1
обходится без всяких корней. Но 8 – совсем другое дело…
– Обратите внимание, пожалуйста, – сказал Сомс.
8 = 1/0,(1) – 1 × 1
9 = 1/0,(1) + 1 – 1
– Ага! Вот это да! И дальше
10 = 1/0,(1) + 1 – 1
11 = 1/0,(1) + 1 + 1
и…
– Вы щедро тратите свои единицы, – заметил Сомс. – Лучше приберечь их для дальнейшего.
Он написал:
10 = 1/0,1
11 = 11
и добавил:
– Обратите внимание на отсутствие символа периода, Ватсап. На этот раз это обычная десятичная дробь 0,1. А-а, и вам следует домножить то и другое на 1 × 1, чтобы не оставлять лишних единиц или потратить их еще каким-то способом из тех, о которых я упоминал. Но вообще-то можно опускать эти лишние единицы, ведь позже мы найдем, куда их можно употребить.
– Да! Вы имеете в виду что-то вроде
и т. д.?
По губам Сомса промелькнула тень улыбки.
– Вы точно все схватили, Ватсап!
– Но как насчет 15? – спросил я.
– Тривиально, – вздохнул он и написал:
К этому я триумфально добавил:
и Сомс одобрительно кивнул.
– Вот теперь задача начинает становиться интересной, – заметил он. – Как насчет 23? Справитесь?
– Есть, Сомс! – воскликнул я.
– Мы помним, – пояснил я, – что 4! = 24, как вы столь мудро заметили. Здорово, Сомс! Хотя 26 я не смог бы выразить, даже если бы на кону была моя жизнь.
– Ну… – начал он и остановился.
– Ага, застряли, не так ли?
– Ни в малейшей степени. Я просто думал о том, есть ли необходимость вводить новый символ. Конечно, он немало облегчит нам жизнь. Ватсап, слышали ли вы когда-нибудь о функциях округления, которые еще называют «пол» и «потолок»?
Мой взгляд против моей воли метнулся за подсказкой вниз, к ногам, а затем вверх, поверх головы Сомса, но вдохновение меня не осенило.
– Вижу, что не слышали, – сказал Сомс. «Откуда он знает, что я думаю? – подумал я. – Это даже…»
– Жутковато… да, разве не так? Я читаю вас, как открытую книгу, Ватсап. И эта книга, вероятно, «Сказки матушки Гусыни». Так вот эти функции выглядят так:
– Прекрасно, Сомс. Хотя я, признаюсь, не понимаю…
– Идея, Ватсап, в том, что посредством этих функций мы можем выразить полезные небольшие числа при помощи только двух единиц. К примеру,
– Ну да… – с сомнением проговорил я.
– Тогда мы идем дальше, потому что
Не говоря уже о других возможных вариантах.
Тысячи разрозненных мыслей метались в моей голове. Одна в конце концов выступила перед.
– Но, Сомс, я только сейчас понял, что
потому что √24 = 4,89, а потолок этого числа равен 5. Поэтому я смогу теперь представить 29 и 30!
Говоря это, я имел в виду просто 30, а не факториал 30, вы понимаете. Пунктуация в математике – такая морока.