Читаем Математические головоломки профессора Стюарта полностью

16 + 61 = 77, порядок получается правильный;

77 + 77 = 154, переставляем цифры – получаем 145;

145 + 541 = 686, переставляем цифры – получаем 668;

668 + 866 = 1534, переставляем цифры – получаем 1345.


Джон Хортон Конвей предположил, что, с какого бы числа вы ни начали, со временем эта последовательность либо войдет в повторяющийся цикл, либо превратится в бесконечно возрастающую последовательность


123n4444 → 556n7777 → 123n+14444 → 556n+17777 → …,


где n обозначает не n-ю степень, а n одинаковых цифр подряд.

Математические даты

Следующий тройной палиндром будет 21:12 21/12 2112.

Следующий простой палиндром был 20:02 30/03 2002.

Собака Баскетболлов

– В самом деле, мадам, доктор Ватсап прав, – подтвердил Сомс. – Достаточно сообразить, что сдвинуто было всего четыре шара, и требуемая расстановка шаров становится очевидной.

– Но какая же это расстановка?

– Эту информацию, мадам, согласно вашему же собственному заявлению, мы можем раскрыть только старшему ныне живущему мужчине в роду.

– А именно лорду Эдмунду Баске́, – уточнил я, – который в настоящий момент находится в коме. Что делает нашу задачу весьма слож…

– Чепуха! – заявила леди Иакинф. – Вы можете сказать мне все.

По ее лицу было очевидно, что ничто на свете не заставит ее свернуть с избранного пути.

– Очень хорошо, – сказал Сомс, делая быстрый набросок. – Должно быть, пуд… э-э, гигантская слюнявая псина… сдвинула четыре каменных шара, изображенных здесь белым цветом, на позиции, обозначенные черным. Или, может быть, все произошло в соответствии с одной из двух других схем, которые возникают при повороте данного решения. Но вы сказали, что ориентация этой структуры не имеет значения.

Теперь я понял смысл загадочного вопроса, заданного им немного раньше.



– Чудесно! – обрадовалась леди Иакинф. – Я велю Вилликинсу поставить их обратно.

– Но разве это не нарушит условий церемонии? – поинтересовался я.

– Разумеется, доктор Ватсап. Но у нас нет никаких рациональных причин бояться каких бы то ни было неблагоприятных последствий. Этот древний запрет – лишь проявление старого… э-э… суеверия.

Месяцем позже Сомс вручил мне номер газеты Manchester Garble[36].

– Господи Боже! – воскликнул я. – Лорд Баске́ умер, а Баскет-холл выгорел дотла! Страховая компания, в которой было застраховано семейство, отказало в выплате, потому что действия Вредоносных сил абсолютного зла не подпадают под страховой случай. Род Баске́ разорен! Леди Иакинф помещена в лечебницу для неизлечимых душевнобольных!

Сомс кивнул.

– Чистое совпадение, я уверен, – сказал он. – Сейчас, задним числом, ясно, что мне, может быть, следовало сказать леди Иакинф насчет пуделя.

Цифровые кубы

370, 371 и 407.

Несмотря на то что эта задача вроде бы не имеет никакого математического значения, нужно обладать хорошими знаниями математики, чтобы найти все четыре ее решения, и очень хорошими, чтобы доказать, что других решений не существует.

Я попробую кратко описать один из возможных подходов.

Поскольку числа с начальными нулями исключаются, нам остается проверить всего 900 возможных комбинаций. Но их количество можно сократить. Кубы всех десяти цифр равны 0, 1, 8, 27, 64, 125, 216, 343, 512 и 729. Сумма трех кубов составляет не более 999, поэтому можно заранее исключить числа, содержащие две девятки, две восьмерки, восьмерку и девятку и т. д.

Предположим, одна из цифр – это нуль. Тогда искомое число представляет собой сумму двух кубов из нашего списка. Из 55 подобных пар лишь две, 343 + 27 = 370 и 64 + 343 = 407, обладают нужным свойством.

Далее мы можем считать, что ни одна из цифр числа не равна 0. Предположим, одна из них равна 1. Аналогичные вычисления дают нам 125 + 27 + 1 = 153 и 343 + 27 + 1 = 371.

Теперь мы можем считать, что ни одна из цифр не равна ни 0, ни 1. Список кубов, с которыми можно дальше работать, при этом немного сокращается. И т. д.

Кое-какие уловки, к примеру учет четности или нечетности чисел, также помогают сократить объем вычислений. Этот довольно медленный, но систематический подход – а Сомс рекомендует ко всему подходить систематически – приводит нас к результату без каких бы то ни было серьезных препятствий на пути.

Самовлюбленные числа

Здесь мы разрешим начальные нули:

четвертые степени: 0000 0001 1634 8208 9474;

пятые степени: 00000 00001 04150 04151 54748 92727 93084.

Без улик!

– Сомс! – воскликнул я. – Я ее решил!

– Да, убийца – графиня Лизелотта фон Финкельштейн, она ехала верхом на своем чистокровном жеребце по кличке Князь Игорь и вела в поводу трех упряжных лошадей, чтобы замаскировать следы на…

– Нет-нет, Сомс, речь не о вашем деле! Я о задаче!

Он бросил короткий взгляд на решение, которое я нацарапал на полях газеты.

– Верно. Случайное попадание, без сомнения.

– Нет, Сомс, я вывел его путем логических рассуждений на основе принципов, которые вы вложили в мою голову. Во-первых, я понял, что сумма чисел в каждой области должна равняться 20.

Перейти на страницу:

Похожие книги