– Потому что полная сумма чисел во всех ячейках составляет (1 + 2 + 3 + 4) × 4 = 40 и ее следует поделить поровну между двумя областями, – не задумываясь отозвался Сомс.
– Именно. Далее, как только я решил сосредоточиться на
– Почему?
– Любое другое число на этом месте сделает сумму слишком большой.
– Вы в самом деле учитесь, Ватсап. Очень хорошо: продолжайте.
Я улыбнулся в ответ на эту слабую похвалу, ведь услышать
– Ну, хорошо… теперь несложно проверить, что способ правильного заполнения ячеек только один. Числа во второй области расставляются вынужденно: так, в крайней правой клетке верхней строки должна стоять четверка, а затем четверки должны идти вниз по диагонали; затем две тройки также вынужденно встают на свои места, и, наконец, две двойки занимают оставшиеся пустыми клетки.
Эту задачу придумали Джерард Баттерс, Фредерик Хенле, Джеймс Хенле и Колин МакГоги, а опубликована она в журнале
Краткая история судоку
Приведем два принципиально разных решения головоломки Озанама:
Не забывайте: каждое из этих решений путем перестановок достоинств и мастей порождает 576 родственных решений, поэтому не удивляйтесь, если ваши решения выглядят не так, как приведенные. Если вы начинаете с ряда A♠ K♥ Q♦ J♣ (или можете привести свое решение в такую форму), вам достаточно подумать только о том, как преобразовать остальные три ряда.
Раз, два, три
Дело о четырех тузах
– Все это просто трюк, Ватсап. При надлежащей подготовке он работает автоматически, какую бы последовательность складывания ни выбрали зрители.
– Чертовски умно, да? – заметил я.
Сомс хмыкнул.
– Когда Гудунни готовил колоду, он поместил тузы на 1 = e, 6, 11 и 16-е места, если считать сверху вниз. Поэтому, когда из колоды выложили квадрат, тузы легли вдоль диагонали из верхнего левого угла в правый нижний. Но лежали они рубашкой кверху, поэтому вы, разумеется, и не подозревали о подвохе.
– Представьте себе, что получится, если перевернуть диагональные карты лицом кверху. Тогда весь квадрат будет выглядеть как шахматная доска с тузами вдоль большой диагонали:
– Так вот, такой расклад обладает замечательным математическим свойством. Как бы вы ни складывали квадратное поле, на любом этапе карты, которые оказываются в результате на определенной позиции, будут смотреть лицом в одну и ту же сторону: либо вверх, либо вниз.
– Правда?
– Давайте попробуем. К примеру, мы могли бы начать со складывания вдоль центральной вертикальной линии. Представьте, как лягут при этом карты верхнего ряда. Третья (смотрит вверх) переворачивается (и смотрит вниз) и ложится сверху на вторую карту – она заранее лежит лицом вниз. Четвертая карта (вниз) тоже переворачивается (вверх) и ложится сверху на первую (тоже вверх).
Я начал смутно понимать, как все это работает.
– То же самое происходит и с остальными рядами?
– Точно. После первого складывания образуется прямоугольник из карт или маленьких стопочек карт. Карты в каждой стопочке смотрят в одну сторону (вверх или вниз), а весь набор стопочек имеет тот же вид шахматной доски, где чередуются карты лицом вверх и карты лицом вниз, как в первоначальном раскладе. Поэтому ровно то же самое происходит и при следующем складывании, и при следующем. К тому моменту, когда у нас образуется единая стопка, все карты в ней окажутся повернутыми лицом в одну сторону.
– Да, но ведь когда мы начинали, карты на диагонали лежали не той стороной, которая нужна для шахматного порядка, – заметил я.
Этой фразой я, откровенно говоря, хотел возразить Сомсу, но он буквально просиял от моей догадливости.
– Вот именно! Поэтому после складывания они
Чертовски изобретательно!