Если только Арбатнот говорит правду, то из его слов нам становится известно, что виновен Берлингтон. Однако в этом случае Волверстон лжет, следовательно, виновен именно Волверстон. Это логическое противоречие, делаем вывод о том, что Арбатнот не говорит правду.
– Если только Берлингтон говорит правду, то…
– Волверстон лжет! – воскликнул я. – Так что виновен Волверстон!
Сомс сердито взглянул на меня – ведь я сорвал его эффектное выступление.
– Это так, Ватсап, и остальные заявления этому не противоречат. Так что мы уже знаем, что вор – Волверстон. Однако имеет смысл проверить и остальные два варианта, чтобы избежать даже малейшей возможности ошибки.
– Все абсолютно ясно, дружище, – сказал я.
Сомс достал трубку, но не стал ее зажигать.
– Если только Волверстон говорит правду, то заявление Берлингтона ложно, следовательно, Арбатнот говорит правду. Снова противоречие, поскольку известно, что он лжет. Если только Гамильтон говорит правду, возникает это же противоречие. Поэтому единственный возможный вариант – тот, где правду говорит только Берлингтон, и тогда вор – Волверстон. Как Ватсап проницательно заметил.
– Благодарю вас, джентльмены, – сказал Спайкрафт. – Я знал, что могу на вас положиться.
По его жесту в комнату тенью проскользнула какая-то фигура. Короткий разговор шепотом, и человек вновь исчез.
– В жилище доктора будет немедленно проведен обыск, – сказал Спайкрафт. – Я уверен, что документ будет найден.
– Значит, мы спасли империю! – воскликнул я.
– До следующего раза, когда кто-нибудь оставит секретные документы на сиденье какого-нибудь кэба, – сухо заметил Сомс.
По пути домой я прошептал на ухо своему спутнику:
– Сомс, если Спайкрафт – специалист по простым числам, то что он делает в контрразведке? Ведь здесь не может быть никакой связи, правда?
Он внимательно посмотрел на меня и покачал головой. Что имелось в виду – отсутствие связи, о которой я говорил, или предупреждение и совет не развивать эту тему, – мне неизвестно.
Еще одна любопытная числовая закономерность
123456 × 8 + 6 = 987654;
1234567 × 8 + 7 = 9876543;
12345678 × 8 + 8 = 98765432;
123456789 × 8 + 9 = 987654321.
Здесь не до конца ясно, что «должно» идти следующим: может быть,
234567890 × 8 + 10,
что равно 9876543130, так что закономерность на этом прекращается. Но, может быть, мне следовало взять (123456789) × 10 + 10 = 12345678900. Тогда
12345678900 × 8 + 10 = 9876543210.
Далее
(12345678900) × 10 + 11 = 123456789011,
что приводит нас к
12345689011 × 8 + 11 = 98765432099
и т. д. Если поэкспериментировать, можно поймать другую закономерность, которая продолжается до бесконечности.
Промежутки между простыми числами
Гипотеза Эллиота – Халберстама[37]
носит очень специальный характер. Пусть π (Гипотеза Эллиота – Халберстама говорит о том, насколько велика эта ошибка: гипотеза утверждает, что для любых θ < 1 и A> 0 существует постоянная C> 0 такая, что
Знак одного. Часть вторая
Вот одно такое решение:
Объяснение см. в главе «Знак одного. Часть третья».
Евклидовы каракули
Вы могли бы сделать это вручную с использованием разложения на простые множители, если бы потратили на это день-другой. Вам пришлось бы выяснить, что
44 758 272 401 = 17 × 17 683 × 148 891;
13 164 197 765 = 5 × 17 683 × 148 891.
Затем вы могли бы сделать вывод, что НОД равен 17 683 × 148 891 = 2 632 839 553.
При использовании алгоритма Евклида весь расчет выглядит так:
(13 164 197 765; 44 758 272 401) → (13 164 197 765; 31 594 074 636) → (13 164 197 765; 18 429 876 871) → (5 265 679 106; 13 164 197 765) → (5 265 679 106; 7 898 518 659) → (2 632 839 553; 5 265 679 106) → (2 632 839 553; 2 632 839 553) → (0; 2 632 839 553).
Следовательно, НОД равен → 2 632 839 553.
123456789 раз по X
123456789 × 1 = 123456789;
123456789 × 2 = 246913578;
123456789 × 3 = 370370367;
123456789 × 4 = 493827156;
123456789 × 5 = 617283945;
123456789 × 6 = 740740734;
123456789 × 7 = 846197523;
123456789 × 8 = 987654321;
123456789 × 9 = 1111111101.
В этих числах присутствуют все девять ненулевых цифр в разном порядке, за исключением тех случаев, когда мы умножаем на число, кратное 3 (то есть на 3, 6 и 9).
Знак одного. Часть третья
Поскольку
62 = 7 × 9–1 = 7/0,(1) – 1,
мы можем воспользоваться представлением 7 через две единицы, чтобы получить 62 из четырех единиц.