Читаем Математические головоломки профессора Стюарта полностью

Долгое время Сомс и Ватсап никак не могли выразить 138 через четыре единицы, но потом, воспользовавшись озарением Ватсапа про квадратные корни и факториалы и применив системный подход, они в конце концов выяснили, что 138 можно получить с использованием всего лишь трех единиц. Стартовой позицией, опять же, является семерка, выраженная через две единицы, и тогда



И наконец,


138 = 46/√0,(1),


что, кстати говоря, представляет собой хитрый способ умножения на 3 с использованием всего одной дополнительной единицы.

Бросание монетки – несправедливый жребий

Persi Diaconis, Susan Holmes, and Richard Montgomery, Dynamical bias in the coin toss, SIAM Review 49 (2007) 211–223.

То же в популярном изложении: Persi Diaconis, Susan Holmes, and Richard Montgomery, The fifty-one percent solution, What's Happening in the Mathematical Sciences 7 (2009) 33–45.

Аналогичные эффекты возникают при бросании костей – не только обычных кубиков, но и любых правильных многогранников. См.: J. Strzalko, J. Grabski, A. Stefanski, and T. Kapitaniak, Can the dice be fair by dynamics? International Journal of Bifurcation and Chaos 20 No. 4 (April 2010) 1175–1184.

Исключение невозможного

– Ваше упущение, – сказал Сомс, – состояло в том, что вы не заметили, что двигаться могут не только стаканы, но и налитое в них вино. Я просто возьму второй и четвертый стаканы и перелью их содержимое в седьмой и девятый.

Сила мидий

Monique de Jager, Franz J. Weissing, Peter M. J. Herman, Bart A. Nolet, and Johan van de Koppel. Le×vy walks evolve through interaction between movement and environmental complexity, Science 332 (4 June 2011) 1551–1553.

Доказательство шарообразности Земли

Мы видели, что при вычислении средних скоростей на фиксированном расстоянии нам следует использовать среднее гармоническое, а не среднее арифметическое значение. Гармоническое среднее возникает также при оценке расстояния между двумя аэропортами, если учитывать силу ветра, – по аналогичной, с небольшими отличиями, причине. Посмотрим на простую модель. Будем считать, что скорость самолета относительно воздуха равна c, летит он по прямой, а ветер дует строго вдоль этой прямой со скоростью w. Считаем, что c и w постоянны. Тогда a = c – w, b = c + w. Мы хотим оценить d на основании времен r и s. Чтобы избавиться от w, мы выразим a и b и получим a = d/r и b = d/s. Таким образом,

c – w = d/r, c+w = d/s.


Сложив, получим 2c = d (1/r + 1/s). Тогда c = d (1/r + + 1/s)/2. Если бы ветра не было, полет в одну сторону занял бы время t, где d = ct. Следовательно,

t = d/c = d/[d (1/r + 1/s)/2] = 1/[(1/r + 1/s)/2],


это и есть гармоническое среднее между r и s.

Короче говоря: если мы говорим о самолеточасах, то из этой простой модели воздействия ветра видно, что пользоваться следует гармоническим средним времени перелета в двух направлениях.

123456789 раз по X. Продолжение

123456789 × 10 = 1234567890;

123456789 × 11 = 1358024679;

123456789 × 12 = 1481481468;

123456789 × 13 = 1604938257;

123456789 × 14 = 1728395046;

123456789 × 15 = 1851851835;

123456789 × 16 = 1975308624;

123456789 × 17 = 2098765413;

123456789 × 18 = 2222222202;

123456789 × 19 = 2345678991.


В этих произведениях присутствуют все десять цифр 0–9 в некотором порядке, за исключением тех случаев, когда мы умножаем на число, кратное 3… Вплоть до 19, когда красивая закономерность останавливается (19 не кратно 3, но в ответе дважды встречается 9 и нет 0).

Но затем закономерность возобновляется:



Следующие исключения возникают на 28 и 29. На числах 30–36 все работает, на 37 вновь происходит сбой. На этом месте я прекратил вычисления. Что происходит дальше? Понятия не имею.

Загадка золотого ромба

Сомс затянул узел до конца, сплющил его и поднес к свету.

– Вот это да, пятиугольник! – изумленно воскликнул я.

– Точнее сказать, Ватсап, это похоже на правильный пятиугольник, у которого одна диагональ видима, а остальные три скрыты. Обратите внимание на отсутствие горизонтальной диагонали. Если ее добавить, к примеру, сложив полоску еще раз, то получится…



– Пятиконечная звезда! Пентаграмма! Ее используют в черной магии для вызова демонов!

Сомс кивнул.

– Но без этой последней складки и, соответственно, без одного ребра пентаграмма окажется неполной, и демон вырвется. Так что этот символ выражает угрозу выпустить в мир демонические силы, – он невесело улыбнулся. – Конечно, демонов в сверхъестественном смысле не существует, их невозможно ни вызвать, ни выпустить. Но вот люди демонического нрава, безусловно, существуют…

– Такие, к примеру, как в террористической организации Ал-Гебра! – воскликнул я. – Меня изгнали из Ал-Гебраистана оружием математического образования!

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг