Читаем Математические модели в естественнонаучном образовании полностью

Таблица 1.1. Рост популяции по простой модели

Момент времени         Численность

0                                          500

1                                          (1. 07)500 = 535

2                                          (1. 07)2500 = 572.45

3                                          (1. 07)3500 612.52

…                                         …

По закономерностям в таблице 1.1 легко перейти от рекуррентного соотношения для  к замкнутой форме записи, чтобы осталась только зависимость от  в явном виде: . На этой модели теперь легко предсказать численность популяции в любое время.

Может показаться странным называть  разностным уравнением, когда разность  там не появляется. Однако уравнения  и  эквивалентны, поэтому любое из них разумно определять одним и тем же термином.

Пример. Предположим, что система математического образования имеет очень жесткие ограничения на целевые цифры приёма в ВУЗы (что вполне реалистично на просторах СНГ), по которым каждый год выпускается 200 молодых специалистов и все сотрудники пенсионного возраста уходят на заслуженный отдых. После того, как состоялся очередной выпуск, только 3% остаются работать по специальности, чтобы связать свою профессиональную деятельность с математикой, остальные либо эмигрируют, либо находят выше оплачиваемую работу. Чтобы написать разностное уравнение в этой системе, где будем измерять  в поколениях, нужно просто заметить, что уровень «смертности» равен , в то время как эффективная «плодовитость» системы равна . Следовательно, .

Вопросы для самопроверки:

– Будет ли общая численность математиков расти, а не уменьшаться при таких условиях?

– Предположим, вы не знаете эффективной «плодовитости», но знаете, что численность  стабильна (неизменна) с течением времени. Какой должна быть ? (Подсказка: поймите, что такое , если численность стабильна?) Если каждый год выпускается 200 молодых специалистов, какая их часть должна оставаться в системе и обучать математиков следующего поколения?

Обратите внимание, что в этой последней модели мы игнорировали тех математиков, кто не участвует в обучении математиков следующего поколения. Это на самом деле довольно распространенный подход и упрощает модель. Однако это означает, что делаются дополнительные предположения. Для конкретного направления точное количество учителей может мало влиять на то, как растет численность специалистов. Возможно, учителя всегда встречаются примерно в равном количестве с узкими специалистами, так что мы знаем, что общая численность людей, посвятивших жизнь математике, просто вдвое превышает число учителей математики. С другой стороны, численность профессиональных математиков может вести себя иначе, чем численность учителей математики, но независимо от того, мало ли учителей или их много, всегда достаточно, чтобы появление учителей происходило непрестанно. Таким образом, именно численность учителей математики является важным параметром для отслеживания, чтобы понять долгосрочный рост или сокращение числа профессиональных математиков в стране.

Вопросы для самопроверки:

– Можете ли вы представить себе обстоятельства, при которых игнорирование уменьшения числа профессионалов той или оной области было бы хорошей идеей?

Так что же такое разностное уравнение? Теперь, когда увидели разностное уравнение на примере, можно попытаться дать строгое определение: разностное уравнение – это формула, выражающая значения некоторой величины  в терминах предыдущих значений . Таким образом, если  является какой-либо функцией, то  называется разностным уравнением. В предыдущем примере использовалась , но часто  будет более сложным.

Изучая разностные уравнения и их приложения, рассмотрим два основных вопроса: 1) Как найти подходящее разностное уравнение для моделирования ситуации? 2) Как понять поведение модели разностных уравнений после того, как её нашли?

Обе эти задачи бывают довольно трудны. Тем не менее, обязательно научитесь моделировать с помощью разностных уравнений, глядя на математические модели, используемые разными авторами в классической литературе, а затем создадите собственные модели. Однако, честно говоря, это не обязательно исключит столкновение с принципиально неразрешимой проблемой. Что касается понимания поведения, которое моделируется разностным уравнением, то обычно не представляется возможным найти явную формулу, как было сделано выше для , описывающего численность популяции в мальтузианской модели. Вместо этого разрабатываются методы извлечения менее точной, но качественной, а не количественной информации из модели.

Перейти на страницу:

Похожие книги

Павел I
Павел I

Император Павел I — фигура трагическая и оклеветанная; недаром его называли Русским Гамлетом. Этот Самодержец давно должен занять достойное место на страницах истории Отечества, где его имя все еще затушевано различными бездоказательными тенденциозными измышлениями. Исторический портрет Павла I необходимо воссоздать в первозданной подлинности, без всякого идеологического налета. Его правление, бурное и яркое, являлось важной вехой истории России, и трудно усомниться в том, что если бы не трагические события 11–12 марта 1801 года, то история нашей страны развивалась бы во многом совершенно иначе.

Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский

Биографии и Мемуары / История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное
История алхимии. Путешествие философского камня из бронзового века в атомный
История алхимии. Путешествие философского камня из бронзового века в атомный

Обычно алхимия ассоциируется с изображениями колб, печей, лабораторий или корня мандрагоры. Но вселенная златодельческой иконографии гораздо шире: она богата символами и аллегориями, связанными с обычаями и религиями разных культур. Для того, чтобы увидеть в загадочных миниатюрах настоящий мир прошлого, мы совершим увлекательное путешествие по Древнему Китаю, таинственной Индии, отправимся в страну фараонов, к греческим мудрецам, арабским халифам и европейским еретикам, а также не обойдем вниманием современность. Из этой книги вы узнаете, как йога связана с великим деланием, зачем арабы ели мумии, почему алхимией интересовались Шекспир, Ньютон или Гёте и для чего в СССР добывали философский камень. Расшифровывая мистические изображения, символизирующие обретение алхимиками сверхспособностей, мы откроем для себя новое измерение мировой истории. Сергей Зотов — культурный антрополог, младший научный сотрудник библиотеки герцога Августа (Вольфенбюттель, Германия), аспирант Уорикского университета (Великобритания), лауреат премии «Просветитель» за бестселлер «Страдающее Средневековье. Парадоксы христианской иконографии». 

Сергей О. Зотов , Сергей Олегович Зотов

Религиоведение / Учебная и научная литература / Образование и наука
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)

Предлагаемая монография стала результатом многолетней работы авторов над темой изображения России во французской прессе в период Революции и Наполеоновских войн. Двадцатипятилетие 1789-1814 гг. характеризовалось непростыми взаимоотношениями России и Франции, то воевавших друг с другом, то бывших союзниками. Авторы анализируют механизмы функционирования прессы и управления ею со стороны государства, а также то, как публикации в центральных и региональных газетах меняли общественное мнение о Российской империи и об отдельных аспектах ее жизни. Кроме материалов прессы, авторы активно привлекают архивные источники и опубликованные письменные свидетельства эпохи.В формате PDF A4 сохранен издательский макет.

Андрей Александрович Митрофанов , Евгения Александровна Прусская , Николай Владимирович Промыслов

История / Учебная и научная литература / Образование и наука