В общем обозначении элемента aij
первый индекс i всегда указывает номер строки, а второй – номер столбца. Элемент, расположенный в ij -клетке, называютМатрица обозначается одной буквой (часто буквы, обозначающие матриц, набирают жирным шрифтом или снабжают какими-либо дополнительными символами). Однако независимо от принятого способа обозначения матрица всегда является совокупностью таблично упорядоченных элементов. Две матрицы равны, если и только если равны их соответствующие элементы, т.е. А = В при условии aij
= bij (i = 1, 2, ... , n). Ясно, что сравнивать можно только матрицы одного и того же размера, между элементами которых определено отношение равенства.Матрицы, элементами которых являются вещественные или комплексные числа, называют соответственно вещественными или комплексными. Пусть А — комплексная (m × n)-матрица с элементами aij
= αij + iβij. Матрица A̅ того же размера с элементами a*ij = αij + iβij называетсяЧасто для упрощения нулевые элементы в таблицу не записывают, но при этом имеют в виду, что пустые клетки тоже содержат числа (нули).
Кроме приведенной выше клеточной записи, используют и другие способы представления матриц, например:
Матрицы впервые появились в середине прошлого столетия в работах английских математиков А. Кэли и У. Гамильтона. Представление совокупностей элементов в виде матриц и разработанные правила операций над ними оказались весьма плодотворными в математике и нашли широкое применение в физике, технике, экономике. Существенный вклад в разработку общей теории матриц и ее приложений внесли советские математики И. А. Лаппо-Данилевский, А. Н. Крылов, Ф. Р. Гантмахер, М. Г. Крейн.
2. Типы матриц
. Матрица может иметь любое количество строк и столбцов (конечное или бесконечное). В дальнейшем при отсутствии оговорок будут рассматриваться конечные матрицы с числовыми элементами.Если матрица состоит из одного столбца или одной строки, то она соответственно называется
- 30 -
Столбцевую и строчную матрицы называют также
Матрица, количество строк и столбцов которой одинаково и равно n, называется
называется
- 31 -
которая часто обозначается также через 1n
или просто цифрой 1 (не следует принимать это обозначение за число, равное единице).Матрица, все элементы которой равны нулю, называется
Квадратная матрица зазывается верхней (нижней) треугольной, если равны нулю все элементы, расположенные под (над) главной диагональю:
Диагональная матрица является частным случаем как верхней (А), так и нижней (В) треугольных матриц.
3. Сложение матриц
. Сумма двух матриц А и В одинаковых размеров определяется как матрица С тех же размеров, каждый элемент которой равен сумме соответствующих элементов матриц, т.е. C = A +B, если cij = aij + bij. Пример:Из приведенного определения следует, что операция сложения матриц коммутативна, т.е. А+В = В+А, и ассоциативна, т.е. (А+В)+С = А+(В+С). Она естественным образом распространяется на любое число слагаемых. Очевидно также, что матрица А не изменяется при суммировании ее с нулевой матрицей тех же размеров, т.е. А + 0 = А.
4. Умножение матрицы на число
. По определению произведением матрицы А на число α (в отличие от матриц и векторов, числа часто называют- 32 -
Очевидно, справедливы следующие соотношения: α(A + B) = αA +αB; (α + β)A = αA + βA; (αβ)A = α(βA), где A и B — матрицы одинакового размера; α и β — числа (скаляры). Общий множитель элементов можно выносить за знак матрицы, считая его скалярным множителем.
Разность двух матриц одинаковых размеров сводится к уже рассмотренным операциям соотношением A — B = A + (-I)B, т.е. C = A — B, если cij
= aij — bij.