5. Умножение матриц
. По многим соображениям целесообразно определить эту операцию следующим образом: Произведением матрицы A размера (m × n) на матрицу B размера (n × r) является матрица C = AB размера (m × r), элемент cij которой, расположенный в ij-клетке, равен сумме произведений элементов i-й строки матрица A на соответствующие элементы j-го столбца матрицы B, т.е.Умножение А на В допустимо (произведение АВ существует) если число столбцов А равно числу строк В ( в таких случаях говорят, что эти две матрицы согласуются по форме). Пример:
- 33 -
Для матриц A (m × n) и B(n × m) существует как произведение АВ размера m × m, так и произведение BA размера n × n. Ясно, что при m × n эти произведения не могут быть равными уже вследствие различных размеров результирующих матриц. Но даже при m = n, т.е. в случае квадратных матриц одинакового порядка, произведения АВ и ВА не обязательно равны между собой. Например, для матриц
имеем:
Отсюда следует, что вообще операция умножения матриц не подчиняется коммутативному закону (AB ≠ BA). Если же выполняется соотношение AB = BA, то матрицы А и В называю
Умножение (m × n) — матрицы А на единичную матрицу m-го порядка слева и на единичную матрицу n-го порядка справа не изменяет этой матрицы, т.е. Em
A = AEn = A. Если хотя бы одна из матриц произведения АВ является нулевой, то в результате получим нулевую матрицу.Отметим, что из АВ = 0 не обязательно следует, что А = 0 или В = 0. В этом можно убедиться на следующем примере:
6. Транспонирование матрицы. Преобразование матрицы А, состоящее в замене строк столбцами ( или столбцов строками) при
- 34 -
сохранении их нумерации, называется
Произвольная (m × n) — матрица при транспонировании становится ( n × m ) - матрицей, а элемент aij
занимает ji — клетку, т.е. aij = atji.Если матрица (квадратная) совпадает со своей транспонированной, т.е. A = At
, то она называетсяЯсно, что не все элементы таких матриц могут быть выбраны произвольно. Можно убедиться, что из n2
элементов для симметричной матрицы независимыми могут быть только 1/2 n (n + 1), а для кососимметричной -1/2 n (n + 1) элементов.- 35 -
Комплексно-сопряженная и транспонированная матрица (A)t
называетсяЛегко показать, что транспонирование произведения АВ равно произведению транспонированных матриц, взятых в обратном порядке: (AB)t
= BtAt. Дважды транспонированная матрица равна исходной, т.е. (At)t = A.7. Матричная запись системы линейных уравнений
. Первоначально матрицы были введены для упрощения записи систем линейных уравнений, что и обусловило и определение основных матричных операций. Система линейных уравнений:записывается одним матричным равенством
Действительно, перемножив в правой части равенства ( m × n ) - матрицу на столбцевую матрицу, получим
- 36 -
Из равенства матриц-столбцов следуют равенства для соответствующих элементов, которые совпадают с исходной системой уравнений. Если обозначить
то матричное равенство запишется еще короче
y = Ax.
Такое представление системы линейных уравнений оказалось возможным благодаря правилу умножения матиц, которое наилучшим образом подходит для этой цели. Однако исторически дело обстояло как раз наоборот: правила действий над матрицами определялись, прежде всего, исходя из удобства представлений систем линейных уравнений.
8. Линейные преобразования
. Систему уравнений, записанную в начале предыдущего пункта, можно рассматривать как линейное преобразование совокупности величин x1, x2, ..., xn в совокупность y1, y2, ..., ym. Это преобразование полностью определяется коэффициентами aij (i = 1, 2, ..., m; j = 1, 2, ..., n). На языке матриц линейное преобразование y = Ax означает преобразование столбца х в столбец у, которое определяется матрицей преобразования А.