Читаем Математическое мышление. Книга для родителей и учителей полностью

Кроме того, учителя должны постоянно предлагать ученикам связывать идеи, представленные в визуальной форме, с числовыми или алгебраическими методами и решениями. Как показано в главе 5, цветовое кодирование — хороший способ стимулировать установление таких связей. В следующих двух примерах мы видим, насколько цветовое кодирование может улучшить понимание учениками таких концепций, как геометрические фигуры, дроби и деление. В предыдущих главах приведены примеры применения цветового кодирования для алгебраических выражений и параллельных прямых. Когда ученики осваивают соотношения углов, им можно предложить раскрасить разные углы треугольника, разрезать рисунок и выстроить углы в линию, чтобы увидеть соотношения между ними. Визуальное представление углов поможет запомнить эти соотношения.

Понимание дробей тоже можно улучшить, предложив ученикам представить их с помощью цветового кодирования (см. пример 9.6 и рис. 9.5).

ПРИМЕР 9.6. ЦВЕТОВОЕ КОДИРОВАНИЕ ШОКОЛАДНОГО ПИРОГА

Сэм испек шоколадный пирог, который хочет разрезать на 24 равные части. Он намерен разделить пирог поровну со своими пятью друзьями. Разделите пирог на части и воспользуйтесь методом цветового кодирования, чтобы показать, сколько кусочков пирога получат Сэм и его друзья.


Рис. 9.5. Решение задачи с пирогом Сэма (пример 9.6)


Мне особенно нравится подход к цветовому кодированию деления, который разработали Тина Лаптон, Сара Пратт и Керри Ричардсон. Он состоит в том, чтобы предлагать всем ученикам решать задачи на деление с помощью «лоскутного одеяла», которое действительно помогает представить себе и понять разделение чисел на равные группы и остатки (рис. 9.6). Более подробное описание способов организации этого полезного вида деятельности см.: Lupton, Pratt, & Richardson, 2014.


Рис. 9.6. Лоскутные одеяла деления

Источник: Lupton, Pratt, & Richardson, 2014.


Представление математических концепций разными способами — важная математическая практика, которую применяют специалисты по решению задач высокого уровня. Математики используют разные способы представления концепций — графики, таблицы, текстовое описание, выражения, а также (реже) рисунки и наброски. Мариам Мирзахани так описывает процесс размышлений над сложной математической задачей.

Не нужно записывать все детали… Но процесс рисования как-то помогает представить себе картину происходящего.

Мариам сказала, что ее трехлетняя дочь Анахита часто восклицает: «О, мамочка снова рисует!» — когда видит свою маму-математика за работой. «Может, она думает, что я художник?» (Klarreich, 2014).

Каждый раз, когда мне приходится решать сложную математическую задачу, я рисую ее; это лучший из известных мне способов решить трудную задачу и понять концепции, лежащие в ее основе. Работая с учениками, я предлагаю им представить задачу в графическом виде, когда у них возникают трудности; при этом я задаю им вопрос: «Вы пробовали нарисовать эту задачу?» Ученикам, которые не привыкли рисовать задачи, поначалу трудно, но они могут освоить этот метод, и он будет приносить им пользу. В главе 5 представлено больше идей по поводу способов, позволяющих увлечь учеников представлением математических задач в виде рисунков.


Поощряйте интуицию и свободу мысли

В главе 5 идет речь о том, как пользователи математики высокого уровня (такие, как Себастьян Трун, создающий роботы для Смитсоновского института) применяют интуицию для развития математических идей. Леоне Бертон провела интервью с 70 математиками-исследователями, чтобы определить характер их работы; 58 из них говорили о важной роли интуиции в этой работе. В книге «Что же такое математика?» Рубен Херш говорит о том, что «интуиция в математике повсюду» (Hersh, 1999).

Перейти на страницу:

Похожие книги

История американской культуры
История американской культуры

Данное учебное пособие по истории культуры США – относительно краткой, но безусловно яркой – написано почитателями и знатоками этой страны, профессорами Т. Ф. Кузнецовой и А. И. Уткиным. Авторы подробно прослеживают, как колонисты, принесшие на новый континент дух старой Англии и идеи религиозного протестантизма, за четыре века интенсивного развития и приема иммигрантов сумели сделать мир своей культуры и разнообразным, и глубоким. Единственная крупная страна, не знавшая феодализма, США заняли видное место в мировой литературе, киноискусстве, архитектуре, популярной музыке, а также в философии, юриспруденции, естественных и технических науках.Учебник рассчитан на студентов, специализирующихся в культурологии и американистике, но как источник расширения представлений об общественной истории, о выдающемся созидательном опыте человечества будет полезен студентам любого профиля, а также широкому кругу читателей, интересующихся историей и культурой.

Анатолий Иванович Уткин , Татьяна Федоровна Кузнецова

Учебники и пособия
Философия
Философия

Автор учебника А.Г. Спиркин — член-корреспондент РАН, создатель популярнейших в 60-80-е годы учебников по философии. Настоящий учебник состоит из четырех частей: вводное слово, где характеризуется предмет философии, рассматривается соотношение философии и мировоззрения; историко-философский раздел; основы общей философии, где представлены учение о бытии, проблемы человека и его бытие в мире, вопросы души, сознания и разума, вопросы теории познания; социальная философия, где дан философский анализ общества, характеризуются его материальные основы, раскрываются и анализируются формы его духовной жизни, рассматриваются тенденции его развития.Для студентов, аспирантов, преподавателей высших учебных заведений.

Александр Георгиевич Спиркин

Философия / Учебники и пособия / Прочая научная литература / Образование и наука