Еще одно мозаичное занятие стимулирует учеников к осмыслению существующих в алгебре связей между графиками, таблицами значений, членами уравнения и закономерностями. Учитель раздает ученикам листы с четырьмя закономерностями, такие как в примерах 8.5–8.8, и предлагает группам учеников сделать плакат, иллюстрирующий, как они представляют себе рост фигур, и показывающий таблицу значений, график уравнения, а также закономерность, обобщенную и смоделированную с помощью уравнения. Каждый член группы становится экспертом по нескольким формам представления закономерности. Затем учитель вызывает по одному участнику из каждой группы. Все делятся знаниями о своей задаче с другими членами группы.
Затем группы обсуждают сходства и различия между разными формами представления своих алгебраических закономерностей.
Когда ученики становятся экспертами и несут ответственность за обучение других, это стимулирует их взять на себя ответственность за новые знания, которые они получают.
6. Билет на выход
Билет на выход — лист бумаги, который вы выдаете ученикам в конце урока и в котором предлагаете рассказать о своем обучении (пример 8.9). Прежде чем уйти из класса, ученики заполняют эти листы и сдают их. Они могут поразмышлять, что способствует их обучению и дает учителям ценную информацию об обучении и идеи для следующего урока.
Билет на выход _____ Имя _____ Дата _____
Талон на выход _____ Имя _____ Дата _____
7. Онлайн-формы
Я видела, как учителя используют эффективную стратегию, состоящую в том, чтобы предложить ученикам заполнить онлайн-форму в режиме реального времени за время урока и отправить ее на адрес учителя. Можно попросить учеников поделиться комментариями или мыслями по поводу урока. Ученики, которые обычно не принимают активного участия в устном обсуждении, более охотно поделятся своими мыслями в онлайн-режиме. Существует много разных способов использования этой стратегии; в частности, можно попросить учеников прислать свои размышления, предложить проголосовать по какому-то вопросу или показать учителю красный, желтый или зеленый индикатор, который не увидят другие ученики.
8. Рисование в свободной форме
Как было отмечено в главе 4, наука о головном мозге говорит нам, что процесс обучения протекает наиболее эффективно, когда мы используем разные пути в мозге. Этот вывод имеет огромные последствия, которые выходят далеко за рамки методов оценки.
Изучение математики, особенно формальной и абстрактной, на которую приходится б
Рис. 8.4.
Математический рисунок в свободной формеВместо того чтобы предлагать ученикам записать, что они понимают, во время размышлений на уроке или после урока, попросите их изобразить свое понимание в виде эскиза или комикса. Если вы хотите увидеть и даже показать своим ученикам очень интересные и забавные рисунки о математических концепциях, рекомендую некоторые видео Вай Харт, которые можно найти по следующим адресам.
Спирали, последовательность Фибоначчи — представьте себе, что вы растение (часть 1): https://www.youtube.com/watch?v=ahXIMUkSXX0&list=PLF7CBA45AEBAD18B8&index=8
.Вечеринка треугольников: https://www.youtube.com/watch?v=o6KlpIWhbcw&list=PLF7CBA45AEBAD18B8&index=7
.9. Ученики сами пишут вопросы и тесты
Предложите ученикам написать свои вопросы или критерии оценки для других. Само формулирование правильного вопроса поможет сфокусироваться на том, что важно, и позволит мыслить творчески, что уже важно. Ученики получают истинное удовольствие, когда им дают задание написать утверждения для оценки работы по математике.
Комментарии
Все представленные выше стратегии позволяют достичь целей первых двух частей трехэтапного процесса оценки для обучения: эти стратегии помогают ученикам понять, что они изучают и что должны изучить.