Судоку состоит из сетки 9 × 9, один квадрат состоит из меньшей сетки 3 × 3. В каждом квадрате игрок должен заполнить клетки цифрами от 1 до 9 так, что каждое число появляется только один раз в ряду и колонке всего большого квадрата. Кроме того, каждое число должно появляться один раз в каждом квадрате 3 × 3. Создатель головоломки раскидывает несколько цифр в квадрате, они являются подсказками, которые помогают игроку решить задачу. Еще одной особенностью судоку является то, что у каждой головоломки есть только одно решение.
Группа математиков во главе с Гэри МакГуайром из Дублинского университетского колледжа обнаружила, что минимальное количество подсказок, нужное для уникального – то есть единственного – решения, равно 17. Если в головоломке меньше подсказок, то у нее не может быть уникального решения. Однако МакГуайр и его команда не смогли найти этому доказательства. Вместо этого они использовали грубую вычислительную мощность для поиска по всем возможным сеткам судоку. На самом деле, они потратили 7 миллионов часов вычислительного времени в Дублинском центре высокопроизводительных вычислений. Им была необходима вся компьютерная мощность, которую они могли использовать, так как число возможных раскладок судоку огромно: 6 670 903 752 021 072 936 960. Однако исследователям удалось уменьшить это число до более приемлемого размера с помощью алгоритма, основанного на принципе, что некоторые раскладки математически эквивалентны.
Все это показывает, что даже развлечение в вашей газете может содержать в себе интересную математику.
В 2002 году математики утвердили, что судоку является NP-полной задачей. (NP – недетерминированное полиномиальное время.) Что это значит? В сущности, не существует быстрого и легкого пути решения судоку, даже если очень легко определить, является ли данное решение правильным. NP время очень длительное. Что это значит для судоку? Что не существует быстрого и легкого пути решения судоку, даже если очень легко определить, является ли данное решение правильным.
3.10. Математические примеры в работах Ван Гога
Математическое понятие: турбулентность
«Звездная ночь» – это одна из самых красивых и знаковых работ Ван Гога, но в последнее время она известна не только за свою красоту, но также за скрытую в ней математику.
Оказывается, закрученные узоры в «Звездной ночи», а также в «Пшеничном поле с воронами» и в «Дороге с кипарисом и звездой» (две другие картины Ван Гога) демонстрируют странное сходство с турбулентными потоками. Такой вид движения, как турбулентность, можно увидеть в речном водовороте или в дыме от костра. Турбулентность также возникает в движении жидкости в трубах, а из-за турбулентного перемешивания теплого и холодного воздуха в атмосфере мы иногда чувствуем, как самолет начинает трясти во время полета. Хотя турбулентность – понятие обычное, описать его с помощью математики крайне сложно. Чтобы это сделать, математики должны понять решение уравнения Навье-Стокса, сформулированное в 1800-х, оно описывает движения жидкостей. На самом деле, эти уравнения очень сложно решить. (Существует история с участием турбулентности и физика Вернера Гейзенберга. Когда у него поинтересовались, что бы он спросил у Бога, если бы представилась такая возможность, Гейзенберг сказал: «Когда я встречусь с Богом, я задам ему два вопроса: почему теория относительности? И почему турбулентность? Я, правда, думаю, что у него будет ответ на первый вопрос».)
Чтобы определить, совпадают ли узоры в «Звездной ночи» с характеристиками турбулентного потока, ученые исследовали яркость красок, оставленных кистями Ван Гога. Они изучили цифровую версию его картины и сравнили яркость пикселей в пределах изображения. Они обнаружили, что схема яркости соответствует уравнениям, сформулированным в 1940-х русским математиком Андреем Колмогоровым, когда он пытался понять турбулентность, используя статистику. Так что живописная манера Ван Гога действительно имеет глубокое значение.
Андрей Колмогоров родился в 1903 году и был сыном сельского исследователя. У Колмогорова были разные интересы: в математике, среди прочего, он изучал теорию вероятности, топологию и турбулентность. Он также посвятил себя изучению истории и реформированию образования в Советском Союзе. Он умер в 1987 году.
8.11. Почему пройти поперек комнаты – это математический подвиг для вас?
Математические понятия: апории Зенона, бесконечность, бесконечный ряд