Читаем Математика для гуманитариев. Живые лекции полностью

Теперь вспомним формулу куба суммы и раскроем скобки:

а + i = (m + ni)3 = m3 + 3m2ni − 3mn2 − n3i = (m3 − 3mn2) + i(3m2n − n3).

Комплексные числа равны, значит равны их вещественная и мнимая части:

а = m3 − 3mn2, 1 = 3m2n − n3.

Я вернулся из гауссовых чисел в обычные целые числа. С помощью гауссовых чисел я сделал вывод, который никогда в жизни не сделал бы без них. Из а2 = b3 − 1 я получил, что

3m2n − n3 = 1.

Теперь уже всё просто:

3m2n − n3 = 1, n(3m2 − n2) = 1,

n и 3m2n2 — целые числа. Два числа дают в произведении 1 тогда и только тогда, когда они одновременно равны 1 или −1.

n = ±1, 3m2 − n2 = ±1.

Вы заметили, «единицу можно разложить на множители единственным способом: либо 1 умножить на 1, либо −1 умножить на −1». Второй способ неотличим от первого, так как второе решение можно сократить на «обратимое число» (−1). Так что второй случай кажется ненужным для рассмотрения — вроде как получается избыточная аргументация. Но, как будет видно ниже, второй случай отнюдь не лишний.

Мой учитель Саша Шень рассказывал замечательную историю про то, как он стал математиком «из-за избыточной аргументации». Ему подали рыбу, филе (я сам очень долго, лет до 30, думал, что филе — это название рыбы). Так вот. Ему подали филе, и он сказал: «Мама, ну тут кости! Ты можешь вынуть кости?» А мама применила следующий замечательный логический прием, поставив его на дорогу математика. Она сказала: «Так! Саша, во-первых, это филе, и костей в нём быть не может. А во-вторых, где ты видел рыбу без костей?» Саша настолько был потрясен такой «железобетонной» логикой, что после этого стал математиком.

Итак, разберем наши два случая. Хотя они одинаковы с точки зрения единственности разложения на множители, но они не одинаковы с точки зрения наличия решений!

Первый случай: n = 1, 3m2 − n2 = 1, следовательно, 3m2 = 2. Но m — целое число. Значит, такого быть не может.

Второй случай: n = −1, 3m2 − n2 = −1, следовательно, 3m2 = 0. Получаем m = 0.

а + i = (m + ni)3 = (0 − i)3 = (−i)3 = i.

Так как а + i = i, то а = 0. Но b3 = а2 + 1, значит, b = 1.

Это — единственное решение исходного уравнения. Получается, что кроме тривиальных решений, других решений уравнения а2 = b3 − 1 нет.

Из этой теории можно сделать следующий практический вывод. Если у вас с ребенком вышла такая ситуация, что он сложил из кубиков большой куб, вы украли у него кубик, и он сложит квадрат, значит, что-то не так. Значит, он кубик «украл обратно» (и их было 729 скорее всего!). Вы можете сказать: «Так, ты похитил у меня кубик!»

— Как, папа? Как ты это увидел? Ты, наверное, ясновидящий...

— Нет. Я просто умею решать диофантовы уравнения, сынок.

* * *

Учебное издание


Подготовлено к печати и издано по решению

Ученого совета Университета Дмитрия Пожарского


Савватеев Алексей Владимирович


Математика для гуманитариев

Живые лекции


Научные редакторы Е. М. Богданович, В. В. Савватеев

Корректор О. В. Рачкулик

Дизайн макета и компьютерная верстка Е. Г. Иванов

Дизайн и оформление обложки, иллюстрации Е. А. Горева


Подписано в печать 23.06.17. Формат 60x90 1/16.

Тираж 1000 экз. Заказ 117548.


«Русский фонд содействия образованию и науке».

Университет Дмитрия Пожарского.

119435, Москва, ул. Малая Пироговская, д. 13, стр. 1.

www.s-and-e.ru

www.publisher.usdp.ru

knigiudp@gmail.com


Отпечатано: АО «Т 8 Издательские Технологии».

109316, Москва, Волгоградский проспект, д. 42, корп. 5.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии