Читаем Математика для гуманитариев. Живые лекции полностью

Какие простые числа представляются в виде суммы двух квадратов? Эта задача чрезвычайно важная в теории кодирования. (Здесь под словом «кодирование» понимается запись информации в таком виде, чтобы ее не смогли прочесть посторонние лица. А «посторонние лица» обычно очень интересуются методами «взлома» использованного кода.) Человек, который что-то знает про кодирование/декодирование, может взять и разрушить систему Пентагона в два щелчка мыши (вот вам и готов международный конфликт).

Вопросы математического кодирования — это вопросы примерно такого же типа, как и задача о разложении простого числа в сумму двух квадратов. И вот долгожданный ответ на поставленный выше вопрос.

Теорема. (Ферма — Эйлер — Гаусс. Гаусс здесь упомянут потому, что он ввел Гауссовы числа и установил простым образом все три эквивалентности, приводимые в формулировке.)

«Обычное» простое число (не комплексное) p является суммой двух квадратов, то есть p = х2 + у2 (х и у — обычные целые числа), тогда и только тогда, когда p перестает быть простым в гауссовой системе чисел Z[i]. И происходит это тогда и только тогда, когда либо p = 2, либо число «p» имеет, остаток 1 при делении на 4, то есть p = 4k + 1.

У Гаусса несколько «царских результатов». Он называл их разными именами. Например, есть некий закон про поведение остатков при делении одних чисел на другие. Гаусс назвал его «золотым результатом», «золотой результат Гаусса». Связь между представимостью простого числа р в виде суммы двух квадратов и его «поведением» в системе Гауссовых целых чисел — это королевская теорема Гаусса. Как следствие, «сокращая одну из эквивалентностей» в теореме выше, получаем как раз теорему Ферма — Эйлера: Простое число в обычных натуральных числах является суммой двух квадратов тогда и только тогда, когда оно имеет остаток 1 при делении на 4. Это мгновенно вычисляемая характеристика. Например, 97. При делении на 4 дает остаток 1: 97 = 96 + 1 = 4 · 24 + 1. Значит, по нашей теореме оно должно представляться в виде суммы двух квадратов. Так и есть: 97 = 81 + 16 = 92 + 42.

Возьмите число, в котором 25 цифр. Проверьте, что оно имеет остаток 1 при делении на 4, это очень просто. Проверить, что оно простое, немножко сложнее, но тоже не очень долго. Так вот, если вы узнали, что оно простое, и вычислили, что оно имеет остаток 1 при делении на 4, то вы можете спорить на любую сумму с любым неверующим Фомой, что есть два числа, суммой квадратов которых исходное число является. Никакого полного доказательства этой теоремы, кроме как через гауссовы числа, мне не известно (существует, говорят, по крайней мере 6 доказательств).

Давайте вернемся к пифагоровым тройкам. Пифагоровы тройки очень красиво находятся с помощью гауссовых чисел. Предположим, есть тройка x, у, z обычных целых чисел, которые являются сторонами прямоугольного треугольника, то есть

x2 + у2 = z2.

Опять рассмотрим прямоугольный треугольник, наименьший в семействе. Иными словами, x, у, z попарно взаимно просты, у них нет общих делителей. Тогда довольно просто показать, что (x + уi) и (x − yi) — также взаимно просты (это следует из разной четности x и у).

То есть у гауссова числа и сопряженного ему гауссова числа нет общих делителей.

Вспоминаем прошлую лекцию: + уi)(х − уi) = z2.

Произведение равно квадрату некоторого числа. Значит, все (Гауссовы) простые множители числа z входят в него в четной степени. Это означает, что в левой части уравнения стоит, с точностью до обратимых множителей, произведение двух квадратов.

Этот прием применяется во всех похожих структурах, не только в гауссовых числах. Если мы можем доказать основную теорему арифметики, то будет верен и этот замечательный результат: если произведение двух взаимно простых чисел равно квадрату, то каждое из этих чисел является квадратом с точностью до умножения на обратимые числа 1, i, −1 и −i (для гауссовых чисел) или до умножения на любые другие обратимые числа (если целые числа — не гауссовы).

Заметая «под ковер» исследование дополнительных обратимых множителей, делаем вывод, что

(х + yi) = (m + ni)2 = m2 + 2mni − n2 = (m2 − n2) + 2mni.

Комплексные числа равны в том и только том случае, когда их вещественные и мнимые части равны:

х = m2 − n2, у = 2mn.

Отсюда уже нетрудно вывести и формулу для гипотенузы Пифагорова треугольника: z = m2 + n2.

Вот мы и получили «формулу индусов». Через гауссовы числа она выводится почти в одну строчку.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии