Это и есть те «зловредные» формулы, которые доставляли вам головную боль в школе, всем поголовно. Они очень легко выводятся с использованием комплексных чисел.
Некоторые соображения о преподавании математики в школе.
У каждого человека есть некие безумные идеи, в которые он свято верит. Я свято верю в то, что школьная математика должна быть устроена следующим образом.
Преподавание математики начинается с движений,
причем сразу же вводится понятие группы движений — сперва прямой и окружности, затем плоскости. Давайте без обиняков это называть своими именами —Есть такая теорема «о трех гвоздях». Если три точки плоскости остаются неподвижными при движении, то движение является тождественным преобразованием, то есть оно вообще ничего не меняет. Для прямой и для окружности имеются очевидные аналоги этой теоремы, которые еще проще.
Завершим вкратце классификацию движений плоскости. Если у движения имеются две различные неподвижные точки, то неподвижной окажется и вся прямая, их соединяющая, а само преобразование будет являться отражением относительно этой прямой.
Если у движения ровно одна неподвижная точка, то это движение является поворотом. Если неподвижных точек нет, мы получаем два вида движения: параллельный перенос и скользящая симметрия. Больше никаких движений плоскости нет.Это — теорема Шаля, которая должна входить во все школьные программы. После того, как это прошли, нужно приступать к комплексным числам.
Надо сразу сказать, что плоскость — это комплексные числа, образующие поле. Все основные алгебраические понятия должны быть введены прямо в детском саду, чтобы потом в школе уже было можно браться за дело[39].После изучения комплексных чисел выводятся правила умножения и сразу — переход к тригонометрии.
А дальше можно переходить к более интересным вещам, например, к диофантовым уравнениям.
Обсудим, при чем тут комплексные числа (которых Диофант не знал) и диофантовы уравнения? На вещественной оси есть числа специальной природы, называемые
Мы его решили двумя способами: с помощью анализа делимости в обычных целых числах и с помощью алгебраической геометрии. Есть еще и третий способ.
Подобно тому, как среди вещественных чисел можно выделить замечательное семейство целых, можно выделить не менее замечательные семейства и среди комплексных чисел. Чем целые числа принципиально отличаются от вещественных? В них (во множестве целых чисел) нельзя делить. Иногда получается разделить, а иногда — нет. Анализ того, что на что делится, приводит к содержательной и красивой науке: к простым числам, к основной теореме арифметики и, в конечном счете, к решению этого самого уравнения
Теперь мы живем на плоскости, и хотелось бы сделать что-нибудь подобное во множестве комплексных чисел. Давайте по аналогии распространим целые числа на плоскость. Как будут выглядеть целые числа на плоскости? Скажу по секрету, что на плоскости имеется огромное количество числовых систем, которые обобщают и продолжают целые числа. Можно построить числовые системы разными способами, и они все чрезвычайно важны для многих диофантовых уравнений. Различные диофантовы уравнения требуют различных числовых систем. Но самое простое — это рассмотреть комплексные числа, у которых просто обе части (и вещественная и мнимая) являются целыми числами (рис. 154).
Узлы этой сетки и есть «целые числа» на плоскости. Первым их рассматривал Гаусс, мы назовем их