Читаем Математика для гуманитариев. Живые лекции полностью

Иными словами, умножение на число cos φ + i sin φ, примененное ко всем точкам плоскости, является движением плоскости.

Давайте попробуем понять, что же это за движение.

Для простоты изложения по ходу дела точки плоскости я буду называть комплексными числами, а комплексные числа точками плоскости. Это позволит стереть некоторый налет «мнимости», остающийся в выражении комплексные числа.

Пусть q1 = х + yi, q2 = z + ti два комплексных числа, второе из которых не равно ни нулю, ни единице, но при этом лежит на единичной окружности (то есть имеет модуль, или длину, равную единице). Второе число, q2, мы на время всего рассуждения зафиксируем, а первое число, q1, будем «перебирать», подставляя всевозможные комплексные значения.

С помощью формулы q1q2 мы сконструировали некоторое преобразование точек плоскости: любая точка q1 при этом преобразовании переходит в точку q1q2. Ключевое утверждение состоит в том, что у этого преобразования будет только одна неподвижная точка: q1 = 0 (то есть только одна точка останется на месте).

Проведем доказательство этого утверждения. Допустим, какая-то точка q1 осталась на месте. Это означает, что q1 = q1q2. Перенесем оба выражения в левую часть, получим:

q1(1 − q2) = 0.

Мы договорились, что q2 ≠ 1, а тогда 1 − q2 ≠ 0, и на этот множитель можно сократить обе части равенства. Следовательно, q1 = 0, что и утверждалось. Таким образом, наше преобразование плоскости является движением (что было установлено выше) и оставляет на месте ровно одну точку, а именно точку q1 = 0.

Один из примеров движения плоскости ровно с одной неподвижной точкой хорошо известен: это — поворот на некоторый угол относительно неподвижной точки. Но, может быть, одними поворотами дело не ограничивается? Этот вопрос исследовал французский математик М. Шаль. Оказалось, что ничего, кроме поворотов, в этой ситуации быть не может. Принимая его исследования на веру,[38] делаем вывод, что изучаемое преобразование является поворотом.

Итак, это движение — поворот. Остается вопрос, на какой угол мы повернули? Для ответа на этот вопрос вспомним, что число q2 лежит на окружности, то есть равно cos φ + i sin φ при некотором значении угла φ.

Я утверждаю, что наше движение является поворотом именно на угол φ. Потому что точка q1 = 1 перешла в точку q1q2 = cos φ + i sin φ. А раз единица в нее перешла, значит, мы повернули плоскость на угол φ. Ведь комплексное число q1 = 1 + 0i имело в начальный момент нулевой угол поворота.

Таким образом, любая точка переходит в точку, которая получается поворотом на угол φ соответствовавшего исходной точке вектора.

В частности, если я беру некоторый вектор и умножаю его на вектор cos φ + i sin φ, то он переходит в вектор, повернутый на угол φ. Особый важный случай — это умножение на вектор cos π/2 + i sin π/2, то есть просто на число i. Умножение вектора на i приводит к тому, что этот вектор поворачивается на 90°. Это особенно важно для тех технических вузов, где изучают ТОЭ (теоретические основы электротехники). Злые языки даже утверждают, что перед основным экзаменом по ТОЭ там производится предэкзамен: у студента, заснувшего на лекции, над ухом стреляют хлопушкой и грозно спрашивают: УМНОЖЕНИЕ на i? Он должен сразу ответить: ПОВОРОТ НА 90 ГРАДУСОВ! (рис. 152).

Рис. 152. Умножение на i это поворот на 90°.


И окончательно. При умножении комплексных чисел углы складываются. Это правило, которое мы вывели, позволяет нам увидеть все арифметические операции над комплексными числами. А именно, при сложении комплексных чисел складываем их как вектора — по правилу параллелограмма. При умножении — длины векторов перемножаются, а углы поворотов складываются. Слегка почесав в затылке, можно даже сказать так: при делении комплексных чисел их длины делятся, а углы поворота вычитаются друг из друга.

Сейчас будет бонус. Наконец-то мы запомним две зловредные формулы.

Давайте возьмем еще одну точку, лежащую на единичной окружности: cos ψ + i sin ψ. Куда она перейдет при умножении на cos φ + i sin φ?

Она перейдет в точку той же окружности, но повернется на угол φ. То есть суммарный угол для произведения будет + φ).

Получается, что произведение

(cos φ + i sin φ) (cos ψ + i sin ψ)

равно cos(φ + ψ) + i sin(φ + ψ).

Теперь раскроем скобки:

(cos φ + i sin φ) (cos φ + i sin φ) = cos φ cos ψ + cos φi sin ψ + i sin φ cos ψ + i sin φi sin φ = (cos φ cos ψsin φ sin ψ) + i(cos φ sin ψ + sin φ cos ψ).

С другой стороны, это произведение равно cos(φ + ψ) + i sin(φ + ψ). Получается, что

cos(φ + ψ) + i sin(φ + ψ) = (cos φ cos ψ − sin φ sin ψ) + i(cos φ sin ψ + sin φ cos ψ).

Но если два комплексных числа равны друг другу, то вещественная часть равна вещественной, а мнимая — мнимой:

cos(φ + ψ) = cos φ cos ψ − sin φ sin ψ,

sin(φ + ψ) = cos φ sin ψ + sin φ cos ψ.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии