Читаем Математика для гуманитариев. Живые лекции полностью

Хотелось бы уметь делить одну точку на плоскости на другую точку. Это тоже совсем не сложно, если, конечно, не делить на ноль. Но на ноль мы и раньше не могли делить. Так что ничего удивительного в том, что мы не будем делить на 0, нет. Значит, так. Попробуем разделить на число, которое не равно нулю. Используем основное свойство дроби: дробь не изменится, если и числитель, и знаменатель умножить на одно и то же число. В качестве такого числа мы возьмем число, сопряженное к z + ti:

Итак, мы получили комплексное число в стандартном виде: вещественная  и мнимая  части.

Всё. Теперь мы умеем делить, умножать, складывать и вычитать — всё как с обычными действительными числами. Однако мы пока не видим, как геометрически это выглядит, а это очень важно и чрезвычайно полезно.

Давайте все-таки это поймем. Для этого перемножим

(х + yi)(z + ti)(x − yi)(z − ti).

Если я буду перемножать почленно, то получится

(x+yi)(z+ti)(x−yi)(z−ti) = [(xz−yt)+(xt+yz)i][(xz−yt)−(xt+yz)i].

Обратите внимание, получились сопряженные комплексные числа — значит, их произведение равно

(х + yi)(z + ti)(x − yi)(z − ti) = [(xz − yt) + (xt + yz)i][(xz − yt) − (xt + yz)i]) = (xz − yt)2 + (xt + yz)2.

А если я вспомню, что от перемены мест множителей произведение не меняется, и переставлю скобки, то получу

[(x + уi)(х − yi)][(z − ti))(z + ti)] = (х2 + y2)(z2 + i2).

Но мы же умножали одно и то же, значит, результаты совпадают:

(x2 + y2)(z2 + t2) = (xz − yt)2 + (xt + yz)2.

Это таинственное правило иногда изучается в школе как одно из правил сокращенного умножения. Но смысл его скрывается. Можно честно раскрыть все скобки и получить верное равенство. Совершенно честно, без всяких комплексных чисел. Но если вы сделаете это без комплексных чисел, то природа явления будет не видна и непонятна. А с помощью комплексных чисел мы говорим, что (xz − yt)2 + (xt + yz)2 квадрат длины вектора, который является произведением исходных векторов (х, у) и (z, t). А 2 + у2) и (z2 + t2) квадраты длин самих исходных векторов. Если я извлеку корень из этих длин, то получится, что

длина вектора произведения равна произведению длин исходных векторов

Мы узнали, что при перемножении комплексных чисел их длины перемножаются. Осталось выяснить, куда будет направлен вектор произведения. Вопрос, что же происходит с углами поворота каждого из сомножителей?

Сейчас я могу только сказать, что мое произведение лежит где-то на окружности радиуса, равного произведению длин наших векторов. Но где именно? Сейчас мы рассмотрим преобразование плоскости. Давайте нанесем на наши оси координат единичную окружность. На этой окружности «живут» точки 1, −1, i и −i (рис. 149).

Рис. 149. Единичная окружность на комплексной плоскости.


Как записать координаты точки на окружности? Какое комплексное число живет в точке единичной окружности, если вектор повернут на угол φ (см. рис. 150)?

Рис. 150. Нижний катет равен cos φ, правый равен sin φ.


Точка данной окружности определяется углом, на который повернулся вектор единичной длины. Косинус это координата по оси x, синус по оси у. В учебниках пишут, что косинус это отношение прилежащего катета к гипотенузе. Но здесь гипотенуза имеет длину 1. Поэтому косинус равен просто горизонтальному катету. А синус это отношение другого катета к гипотенузе. Гипотенуза имеет длину 1, и синус это просто второй катет.

А теперь я совершу обещанное преобразование: умножу все точки плоскости на комплексное число cos φ + i sin φ.

Напомню, что при умножении комплексных чисел длина получаемого вектора равна произведению длин перемножаемых

Подставим слева в формулу cos р и sin р вместо и t

Ho cos2 φ + sin2 φ = 1 (основное тригонометрическое тождество, следствие теоремы Пифагора). Получаем

Мы домножаем на единицу, а значит, длина вектора не изменяется.

Получается, что при умножении на число cos φ + i sin φ любое комплексное число остается на той же окружности, на которой оно лежало.

Комплексное число «жило», например, в точке А, на расстоянии  от точки (0, 0); после преобразования оно будет «жить» на той же самой окружности в какой-то другой точке В, но на том же расстоянии от (0, 0) (см. рис. 151).

Похожим образом показывается, что для любых двух точек плоскости умножение на cos φ + i sin φ не изменит расстояния между ними.

Рис. 151. В = A · (cos φ + i sin φ)


Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии