Читаем Математика для гуманитариев. Живые лекции полностью

i = (x  − z)/(t − y).

Этого не может, быть, так как (x  − z)/(t − y) —  вещественное число. А число i — НЕ вещественное. Противоречие. Значит, х + yi и z + ti равны тогда и только тогда, когда х = z и t = у одновременно.

Из этого следует, что каждой точке плоскости соответствует единственное комплексное число.

Продолжение в следующей лекции (то есть в лекции 4 части 2).

Лекция 4

Как сложить две точки (и что из этого выйдет)

А.С.: Сегодня мы будем заниматься комплексными числами. Но для начала интересная зарисовка из теории вероятностей. Если бы нас было человек 30, я бы поставил 5 мороженых к 1, что у двоих из здесь присутствующих совпадут дни рождения. На самом деле граница проходит на числе 23. Если в аудитории 23 человека, то вероятность совпадения хотя бы двух дней рождения примерно равна 50%. Правда, совпадут только месяц и число рождения, но не обязательно год. Для людей, которые об этом не задумывались, это совершенно удивительный факт. Вроде бы всего 23 человека, как же такое может быть? Но математика открывает этот секрет.

Еще один интересный сюжет: два человека решили встретиться в метро на станции Кропоткинская. Но вышло так, что они не договорились о времени. Известно лишь, что они свободны между 9 и 10 утра. Стратегия у них такая: человек приходит и ждет 15 минут. Если не дождался, уходит. Вопрос: что вероятней, встретиться или разминуться? Чему равна вероятность того, что они встретятся?

«Математическая» теория вероятностей на эту тему говорит следующее. Давайте расположим на плоскости все возможные исходы в этой «игре».

По оси х будем откладывать момент прихода первого, а по у — второго (в минутах после 9 часов). Получившийся квадрат называется фазовым пространством задачи (рис. 143). А вот если первый может появиться в любой момент от 9 до, например, 11 часов, то фазовое пространство будет не квадратом, а прямоугольником. Так как и момент появления первого, и момент появления второго совершенно непредсказуемы в рамках промежутка с 9 до 10, следует представлять себе, что и квадрат (слева), и прямоугольник (справа) покрыты равномерной сетью из большого количества точек.

Рис. 143. Два разных фазовых пространства.


Теория вероятностей постоянно оперирует с понятием «зависимости» и «независимости» нескольких случайных величин. Здравый смысл подсказывает, что наши события (то есть приход 1-го и приход 2-го) независимы. Тогда все исходы, т. е. пары (время прихода первого и время прихода второго) равновероятны. Мы сейчас нарисуем зону, в которой друзья встретились, и посмотрим, какая у нее площадь (для левой части рис. 143).

Если они пришли в один и тот же момент, то из таких точек мы получим диагональ одинаковый момент прихода. Ясно, что они встретятся (и время ожидания будет равно 0).

А если они немножко отклонились от диагонали влево/вправо? Тогда тоже встретятся, потому что один из них пришел немножко раньше другого и дождался второго. Надо понять, на какое самое большое число минут им можно отклониться друг от друга по времени прихода, чтобы встреча еще произошла? На 15 минут. На одну четверть часа. Иначе будет как в известной песне[35].

Мы получили границы зоны встречи. Что происходит на границе? Первый пришел, например, в 9 часов 50 минут, а второй в 9:35. Тогда второй, который пришел в 9:35, уже собирался уходить, и тут появился первый.

Теперь надо посчитать площадь «встречи» (то есть участка квадрата, описывающего пары моментов прихода, при которых встреча произойдет) и поделить ее на общую площадь фазового пространства. Вычислим сначала площадь оставшейся части для случая квадрата (рис. 144).

s = (3/4)2 = 9/16

— площадь оставшейся части, S = 12 = 1 — площадь квадрата,

— площадь «встречи».

Рис. 144. Встреча возможна только внутри шестиугольника (15′ = 0,25 часа).


Число 7/16 чуть-чуть меньше 1/2. То есть ждут всего 15 минут, а вероятность встречи близка к 50%.

Упражнение. А какой будет ответ, если фазовое пространство не квадратное, а прямоугольное (рис. 143, справа)?

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии