Читаем Математика для гуманитариев. Живые лекции полностью

Теперь — пара слов про великую теорему Ферма. Такие методы, как тот, который мы сейчас рассматривали, развивавшиеся весь XIX век, не привели к решению великой теоремы Ферма для всех показателей. Привело совершенно другое соображение. Соображение такое: если бы существовала тройка а, b, с такая, что аn + bn = сn, то существовала бы некоторая, как математики выражаются, эллиптическая кривая с набором свойств, которые противоречат ее природе. Это — доказательство великой теоремы Ферма в одной фразе. Правда, к этой «одной фразе» придется добавить фраз 20–30, чтобы хоть слегка пояснить, что это за зверь такой — эллиптическая кривая, и, главное, какое отношение она имеет к великой теореме Ферма.

Ну и последний сюжет.

Диофант решал самые разные уравнения. Некоторые он сформулировал, но был не способен решить. А точнее, решения некоторых из них не найдены в первых 6 томах. Мы ничего не знаем про оставшиеся 7 томов, и я не удивлюсь, если в них было всё, что потом открывали в XVII, XVIII, XIX веках. В частности, Эйлер стал рассматривать одно из тех уравнений, которые Диофант не решил. Может, ли быть так, что квадрат некоторого натурального числа отличается от куба другого натурального числа на единицу? То есть требуется решить в целых числах уравнение

а2 = b3 ± 1.

То, что квадрат одного числа просто равен кубу другого, очень легко представить себе, если а = с3 и b = с2, при некотором целом с. В самом деле, тогда

а2 = (с3)2 = c6 = (с2)3 = b3.

Возьмем, например, с = 3. Тогда а = 27, b = 9: 272 = 93 = 729. Так что эта задача неинтересная. Правда, число 729 напоминает мне один разговор.

Однажды два математика беседовали в кафе. Один другому говорит: «На свете нет ни одного числа, которое не было бы чем-то удивительным, просто ни одного». А второй отвечает: «Ну, как же? Ну, я возьму навскидку 1729. Что интересного в числе 1729?» А второй посмотрел на него и сказал: «Ты сам не догадываешься, насколько удивительное число ты назвал! Это первое из натуральных чисел, которое двумя разными способами представляется в виде суммы двух кубов».

Пальцем в небо ткнул и попал в число 1729. И вот что оказалось. Действительно, 1729 = 93 + 103, и 1729 = 123 + 13. Второй математик был сражен этим аргументом.

Так вот, бывает ли, чтобы куб и квадрат отличались на единичку?

Допустим, ваш ребенок играет в кубики. Он сложил из них большой куб, а вы украли у него один кубик. Тогда ребенок взял, развалил куб и сложил большой огромный квадрат. Может ли такое быть? Эйлер полностью решил эту задачу (а2 = b3 ± 1).

Решим только одно уравнение из двух, потому что другое очень сложное: а2 = b3 + 1 — сложное, а2 = b3 — 1 простое.

В обоих случаях можно выписать ответ в явном виде.

У второго уравнения решений нет, кроме тривиальных: а = 0 и b = 1. Мы это сейчас докажем. А у первого, кроме тривиальных (а = 1 и b = 0), решением является пара (2, 3). Ведь 32 = 23 + 1. Других решений нет. Эйлер и это доказал, но весьма сложным путем.

Разберем простой вариант:

а2 = b3 − 1, а2 + 1 = b3, + i)(a − i) = b3.

Могут ли у (а + i) и (а − i) быть общие множители? Пусть (а + i) и (аi) делятся на какое-то простое гауссово число. Тогда их разность

(а + i) − (а − i) = а + i − а + i = 2i

тоже на него делится.

Простых гауссовых чисел, которые делят число 2i, всего одно: (1 + i). Есть еще 1 − i, но это «то же самое простое число», ибо 1 − i = (−i)(1 + i) — то есть, одно получается из другого умножением на обратимое.

Значит, наши числа (a + i) и (a − i), если они не взаимно просты, могут делиться только на (1 + i). Но тогда их произведение делится на (1 + i)2 = 2i. Значит, b делится на 2, а b3 — на 8. Но тогда а2 будет иметь остаток 7 при делении на 8, так как а2 + 1 = b3. А значит, остаток 3 при делении на 4. А, как мы выяснили на предыдущей лекции, таких квадратов не существует. При делении на 4 квадрат дает в остатке либо 1, либо 0. Поэтому такого быть не может.

Значит, ни одного общего делителя у чисел + i) и (а − i) нет. Их произведение является поэтому кубом некоторого гауссова числа. Согласно основной теореме арифметики, из этого следует, что каждое из них само является кубом гауссова числа (снова с точностью до умножения на обратимый элемент 1, i, −1 или i). Но все они тоже кубы, так что сформулированное утверждение верно в точности: скажем, аi = (m + ni)3.

Вдумайтесь, что мы сделали. Мы взяли обычное уравнение в целых числах. Зачем-то перешли в гауссовы числа и внутри гауссовых чисел разложили левую часть на множители. После чего, живя внутри гауссовых чисел, мы сказали, что тогда

аi = (m + ni)3.

При этом а — целое не гауссово число. Гауссово число + i) живет на один шаг выше оси х.

Это число должно быть равно кубу некоторого гауссова числа.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии