Читаем Математика для любознательных полностью

Чем же так замечательно число 1001? С виду оно кажется весьма обыкновенным. Оно даже не принадлежит к избранному разряду так называемых «простых» чисел. Через ячейки Эратосфенова решета оно свободно проскользнуло бы, так как делится без остатка и на 7, и на 11, и на 13 - на три последовательных простых числа, произведением которых оно и является. Но в том, что число 1001 = 7x11x13, нет еще ничего волшебного. Замечательнее то, что при умножении на него трехзначного числа получается результат, состоящий из самого умноженного числа, только написанного дважды, например:

873 x 1001 = 873873;

207 x 1001 = 207207; и т. д.

И хотя этого и следовало ожидать, так как 873 x 1001 = 873 x 1000 + 873 = 873000 + 873, - все же, пользуясь указанным свойством «числа Шехеразады», можно достичь результатов совсем неожиданных, - по крайней мере, для человека неподготовленного.

Задача № 30

Целое общество гостей, непосвященных в арифметические тайны, вы можете поразить следующим фокусом. Пусть кто-нибудь напишет на бумажке, секретно от вас, трехзначное число, какое хочет, и затем пусть припишет к нему еще раз то же самое число. Получится шестизначное число, составленное из трех повторяющихся цифр. Предложите тому же товарищу, или его соседу, разделить - секретно от вас - это число на 7; при этом вы заранее предсказываете, что остатка не получится. Результат деления передается соседу, который, по вашему предложению, делит его на 11; и хотя вы не знаете делимого, вы все же смело утверждаете, что и оно разделится без остатка. Полученный результат вы направляете следующему соседу, которого просите разделить это число на 13 - деление снова выполняется без остатка, о чем вы заранее предупреждаете. Результат третьего деления вы, не глядя на полученное число, вручаете первому товарищу со словами:

- Вот число, которое вы задумали!

Так и есть: вы угадали.

Какова разгадка этого фокуса?

Решение

Этот красивый арифметический фокус, производящий на непосвященных впечатление волшебства, объясняется очень просто: вспомните, что приписать к трехзначному числу его само - значит умножить его на 1001, т. е. на произведение 7x11x13. Шестизначное число, которое ваш товарищ получит после того, как припишет к задуманному числу его само, должно будет поэтому делиться без остатка и на 7, и на 11, и на 13; а в результате деления последовательно на эти три числа (т. е. на их произведение - 1001) оно должно, конечно, снова дать задуманное число.

<p>Число 10101</p>

После сказанного о числе 1001 для вас уже не будет неожиданностью увидеть в витринах нашей галлереи число 10101. Вы догадаетесь, какому именно свойству обязано число это такою честью. Оно, как и число 1001, дает удивительный результат при умножении, - но не трехзначных чисел, а двузначных; каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например:

73 x 10101 = 737373;

21 x 10101 = 212121.

Причина уясняется из следующей строки:

Задача № 31

Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001?

Решение

Да, можно. Здесь даже возможно обставить фокус эффектнее, разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел:

10101 = 3x7x13x37.

Предложив первому гостю задумать какое-нибудь двузначное число, вы предлагаете второму приписать к нему то же число, а третьему приписать то же число еще раз. Четвертого гостя вы просите разделить получившееся шестизначное число, например, на 7; пятый гость должен разделить полученное частное на 3; шестой гость делит то, что получилось, на 37 и, наконец, седьмой делит этот результат на 13, - при чем все 4 деления выполняются без остатка. Результат последнего деления вы просите передать первому гостю: это и есть задуманное им число.

При повторении фокуса вы можете внести в него некоторое разнообразие, обращаясь каждый раз к новым делителям. А именно, вместо четырех множителей 3x7x13x37 можете взять следующие группы трех множителей: 21x13x37; 7x39x37; 3x91x37; 7x13x111.

Число это - 10101 - пожалуй, даже удивительнее волшебного числа Шехеразады, хотя и менее его известно своими поразительными свойствами. А между тем о нем писалось еще двести лет тому назад в «Арифметике» Магницкого, в той главе, где приводятся примеры умножения «с некоим удивлением». Тем с большим основанием должны мы включить его в наше собрание арифметических диковинок.

<p>Число 10001</p>Задача № 32

С этим числом вы также можете проделать фокусы вроде предыдущих, хотя, пожалуй, и не столь эффектные.

Дело в том, что оно представляет собою произведение только двух простых чисел:

10001 = 73 x 137.

Как воспользоваться этим для выполнения арифметических фокусов, читатель, надеюсь, после всего сказанного выше догадывается сам.

<p>Шесть единиц</p>

В соседней витрине мы видим такую диковинку арифметической кунсткамеры:

- число, состоящее из шести единиц. Благодаря знакомству с волшебными свойствами числа 1001, мы сразу соображаем, что

111111 = 111 x 1001.

Перейти на страницу:

Похожие книги