Теперь, когда мы закончили рассмотрение эмпирических методов, а также характеристик торговли фиксированной долей, мы изучим параметрические методы. Эти методы отличаются от эмпирических тем, что в них не используется прошлая история в качестве данных, с которыми придется работать. Мы просто наблюдаем за прошлой историей для создания математического описания распределения исторических данных. Это математическое описание основывается на том, что произошло в прошлом, а также на том, что, как мы ожидаем, произойдет в будущем. В параметрических методах мы имеем дело с этими математическими описаниями, а не с самой прошлой историей. Математические описания, используемые в параметрических методах, называются распределениями вероятности. Чтобы использовать параметрические методы, мы должны сначала изучить распределения вероятности. Затем мы перейдем к изучению очень важного типа распределения, нормального распределения. Мы узнаем, как найти оптимальное/и его побочные продукты при нормальном распределении.
Основы распределений вероятности
Представьте себе, что вы находитесь на ипподроме и ведете запись мест, на которых лошади финишируют в забегах. Вы записываете, какая лошадь пришла первой, какая второй и так далее для каждого забега. Учитываются только первые десять мест. Если лошадь пришла после десятой, то вы запишете ее на десятое место. Через несколько дней вы соберете достаточное количество информации и увидите распределение финишных мест для каждой лошади. Теперь вы можете взять полученные данные и нанести на график. По горизонтальной оси будут отмечаться места, на которых лошадь финишировала, слева на оси будет наихудшее место (десятое), а справа наилучшее (первое). На вертикальной оси мы будем отмечать, сколько раз беговая лошадь финишировала в позиции, отмеченной на горизонтальной оси. Вы увидите, что построенная кривая будет иметь колоколообразную форму.
При таком сценарии есть десять возможных финишных мест для каждого забега. Мы будем говорить, что в этом распределении — десять ячеек (bins).
Посмотрим, что произойдет, если вместо десяти мы будем использовать пять ячеек. Первая ячейка будет для первого и второго места, вторая ячейка для третьего и четвертого места и так далее. Как это отразится на результатах?Использование меньшего количества ячеек при том же наборе данных в результате дало бы распределение вероятности с тем же профилем, что и при большом количестве ячеек. То есть графически они бы выглядели примерно одинаково. Однако использование меньшего количества ячеек уменьшает информационное содержание распределения, и наоборот, использование большего количества ячеек повышает информационное содержание распределения. Если вместо финишных позиций лошадей в каждом забеге мы будем записывать время, за которое пробежала лошадь, округленное до ближайшей секунды, то получим не десять ячеек, а больше, и, таким образом, информационное содержание распределения увеличится.
Если бы мы записали точное время финиша, а не округленное до секунд, то могли бы построить непрерывное
распределение. При непрерывном распределении нет ячеек. Представьте непрерывное распределение как серию бесконечно малых ячеек (см. рисунок 3-1). Непрерывное распределение отличается от дискретного, которое является ячеистым распределением. Хотя создание ячеек уменьшает информационное содержание распределения, в реальной жизни это единственно возможный подход для обработки ячеистых данных, поэтому на практике приходится жертвовать частью информации, сохраняя при этом профиль распределения. И наконец, вы должны понимать, что можно взять непрерывное распределение и сделать его дискретным путем создания ячеек, но невозможно дискретное распределение переделать в непрерывное.