Самыми распространенными величинами для измерения разброса являются дисперсия и стандартное отклонение. Как и в случае со средним абсолютным отклонением, их можно рассчитать для всей совокупности и для выборки. Далее показана версия для всей совокупности данных, которую можно легко переделать в выборочную версию, заменив l/NHal/(N-l).
где V = дисперсия;
N = общее число точек данных;
X. = значение, соответствующее точке i;
А
Положительное значение асимметрии означает, что хвосты больше с положительной стороны распределения, и наоборот. Совершенно симметричное распределение имеет нулевую асимметрию.
В симметричном распределении среднее, медиана и мода имеют одинаковое значение. Однако когда распределение имеет ненулевое значение асимметрии, оно может принять вид, показанный на рисунке 3-3. Для асимметричного распределения (любого распределения с ненулевой асимметрией) верно равенство:
(3.08) Среднее - Мода = 3 * (Среднее - Медиана)
Есть много способов для расчета асимметрии, и они часто дают различные ответы. Ниже мы рассмотрим несколько вариантов:
(3.09) S == (Среднее - Мода) / Стандартное отклонение
(3.10) S = (3 * (Среднее - Медиана)) / Стандартное отклонение
Уравнения (3.09) и (3.10) дают нам первый и второй коэффициенты асимметрии Пирсона. Асимметрия также часто определяется следующим образом:
где S = асимметрия;
N
Х = значение, соответствующее точке i;
А = среднее арифметическое значений точек данных;
D = стандартное отклонение значений точек данных.
И наконец,
Как и предыдущие моменты, эксцесс имеет несколько способов расчета. Наиболее распространенными являются:
где К = эксцесс;
Q
Р = широта перцентиля 10-90.
(3.13) К
где К = эксцесс;
N = общее число точек данных;
Х = значение, соответствующее точке i;
А = среднее арифметическое значений точек данных;
D = стандартное отклонение значений точек данных.
Наконец, необходимо отметить, что «теория», связанная с моментами распределения, намного серьезнее, чем то, что представлено здесь. Для более глубокого понимания вам следует просмотреть книги по статистике, упомянутые в списке рекомендованной литературы. Для наших задач изложенного выше вполне достаточно.
До настоящего момента рассматривалось распределение данных в общем виде. Теперь мы изучим нормальное распределение.
Нормальное распределение