Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Не искушенные в статистике люди часто находят концепцию стандартного отклоне­ния (или квадрата ее величины, дисперсии) трудной для представления. Среднее абсо­лютное отклонение (mean absolute deviation), которое можно преобразовать в стандар­тное отклонение, гораздо проще для понимания. Среднее абсолютное отклонение полностью отвечает своему названию: среднее данных вычитается из каждой точки данных, затем абсолютные значения каждой из этих разностей суммируются, и дан­ная сумма делится на число точек данных. В результате у вас получается среднее рас­стояние каждой точки данных до среднего значения. Преобразование среднего аб­солютного отклонения в стандартное отклонение, и наоборот, представлены далее:

где М = среднее абсолютное отклонение;

S = стандартное отклонение.

Можно сказать, что при нормальном распределении среднее абсолютное откло­нение равно стандартному отклонению, умноженному на 0,7979.

(3.18) S = М * 1 / 0,7978845609

=М* 1,253314137, где S = стандартное отклонение;

М = среднее абсолютное отклонение.

Мы можем также сказать, что при нормальном распределении стандартное отклонение равно среднему абсолютному отклонению, умноженному на 1,2533. Так как дисперсия всегда является стандартным отклонением в квад­рате (а стандартное отклонение является квадратным корнем дисперсии), мы можем задать преобразование между дисперсией и средним абсолютным от­клонением.

(3.19) М = V ^ (1/2) * ((2 / 3,1415926536)^ (1/2))

= V ^ (1/2)* 0,7978845609,

где М = среднее абсолютное отклонение;

V = дисперсия.

(3.20) V = (М * 1,253314137)^ 2,

где V =дисперсия;

М = среднее абсолютное отклонение.

Так как стандартное отклонение в стандартной нормальной кривой равно 1, мы можем сказать, что среднее абсолютное отклонение в стандартной нормальной кривой равно 0,7979. Более того, в колоколообразной кривой, подобной нормальной, семи-интер-квартильная широта равна приблизительно 2/3 стандартного отклонения, и поэто­му стандартное отклонение примерно в 1,5 раза больше семи-интерквартильной широты. Это справедливо для большинства колоколообразных распределений, а не только для нормальных, как и в случае с преобразованием среднего абсолютного отклонения в стандартное отклонение.

Нормальные вероятности

Теперь мы знаем, как преобразовывать наши необработанные данные в стан­дартные единицы и как построить кривую N'(Z) (т.е. как найти высоту кривой, или координату Y, для данной стандартной единицы), а также N'(X) (из уравнения (3.14), т.е. саму кривую без первоначального преобразования в стандар­тные единицы). Для практического использования нормального распределе­ния вероятности нам надо знать вероятность определенного результата. Это определяется не высотой кривой, а площадью под кривой. Эта площадь зада­ется интегралом функции N'(Z), которую мы до настоящего момента изучали. Теперь мы займемся N(Z), интегралом N'(Z), чтобы найти площадь под кри­вой (т.е. вероятности)[12].

где Y=1/(1+2316419*ABS(Z))

и ABSQ = функция абсолютного значения;

ЕХР() = экспоненциальная функция.

При расчете вероятности мы всегда будем преобразовывать данные в стандарт­ные единицы. То есть вместо функции N(X) мы будем использовать функцию

N(Z), где:

(3.16) Z=(X-U)/S,

где U = среднее значение данных;

S = стандартное отклонение данных;

Х = наблюдаемая точка данных.

Теперь обратимся к уравнению (3.21). Допустим, нам надо знать, какова вероят­ность события, не превышающего +2 стандартных единицы (Z = +2).

Y= 1/(1 +2316419*ABS(+2)) =1/1,4632838 =0,68339443311

(3.15a) N'(Z) = 0,398942 * ЕХР(-(+2^2/2))


= 0,398942 *ЕХР (-2)=0,398942*0,1353353=0,05399093525

Заметьте, мы можем найти высоту кривой при +2 стандартных единицах. Подставляя полученные значения вместо Y и N'(Z) в уравнение (3.21), мы можем получить вероятность события, не превышающего +2 стандартных единицы:

N(Z) = 1 - N'(Z) * ((1,330274429 * Y^ 5) -

- (1,821255978 * Y^4) + (1,781477937 * Y^ 3) -

- (0,356563782 * Y ^ 2) + (0,31938153 * Y))

= 1-0,05399093525* ((1,330274429* 0,68339443311^5)-

- (1,821255978 * 0,68339443311 ^ 4 + 1,781477937 * 0,68339443311^ 3) - - (0,356563782 * 0,68339443311 ^2) + 0,31938153 * 0,68339443311))

= 1 - 0,05399093525 * (1,330274429 * 0,1490587) -

- (1,821255978 * 0,2181151 + (1,781477937 * 0,3191643)-

- (0,356563782 * 0,467028 + 0,31938153 - 0,68339443311))


1- 0,05399093525 * (0,198288977 - 0,3972434298 + 0,5685841587 -

-0,16652527+0,2182635596)

= 1 - 0,05399093525 * 0,4213679955 = 1 - 0,02275005216= 0,9772499478

Таким образом, можно ожидать, что 97,72% результатов в нормально распреде­ленном случайном процессе не попадают за +2 стандартные единицы. Это изоб­ражено на рисунке 3-8.

Чтобы узнать, какова вероятность события, равного или превышающего за­данное число стандартных единиц (в нашем случае +2), надо просто изменить уравнение (3.21) и не использовать условие «Если Z < 0, то N(Z) = 1 - N(Z)». Поэтому вторая с конца строка в последнем расчете изменится с

= 1 - 0,02275005216 на 0,02275005216

Перейти на страницу:

Похожие книги

Время – деньги
Время – деньги

«Кто весь день работает, тому некогда зарабатывать деньги» – знакомая ситуация? А ведь так считал один из самых успешных и богатых предпринимателей в истории.Если вы хотите, но не знаете, как заработать свой первый капитал, – автобиографии Генри Форда и Джона Дэвисона Рокфеллера помогут успешно начать бизнес.Советы, которые находятся в этой книге, можно использовать и в повседневной жизни.Например, у Рокфеллера предпринимательская жилка появилась еще в детстве. Джон покупал фунт конфет, делил его на маленькие кучки и с наценкой распродавал собственным сестрам.Мудрость и опыт этих людей послужат вам отправной точкой для финансовой независимости, помогут развить творческое мышление и успешное решение задач.Оказывается, необязательно быть гением – трудолюбие, здравый расчет, правильное воспитание и отличное образование вкупе с умением общаться с людьми и в них разбираться – все, что нужно.Придерживайтесь принципа «учиться у лучших», и тогда все в ваших руках!

Генри Форд , Джон Дэвисон Рокфеллер

Деловая литература