Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

К сожалению, большинство распределений торговых P&L плохо описываются функциями нормального и других распределений. В этой главе мы сначала обратимся к проблеме неопределенной природы распределения торговых P&L и далее изучим метод планирования сценария — естественное продолжение идеи оп­тимального/. Этот метод широко применяется и позволяет находить оптимальное f по ячеистым распределениям. Далее мы перейдем к следующей главе, посвященной опционам и одновре­менной торговле по нескольким позициям. Прежде чем смоделировать реальное распределение торговых P&L, мы должны найти метод сравнения двух распределений.



Тест Колмогорова-Смирнова (К-С)

Хи-квадрат тест, без сомнения, является наиболее популярным из всех методов сравнения двух распределений. Так как многие ориентированные на рынок при­ложения, помимо рассматриваемых в этой главе, часто используют хи-квадрат тест, то он описан в Приложении А. Однако для наших целей наилучшим методом будет тест К-С. Этот очень эффективный тест применим к неячеистым распреде­лениям, которые являются функцией одной независимой переменной (в нашем случае, прибыль за одну сделку).

Все функции распределения вероятности имеют минимальное значение 0 и мак­симальное значение 1. То, как они ведут себя между ними, и отличает их. Тест К-С измеряет очень простую переменную D, которая определяется как максимальное аб­солютное значение разности между двумя функциями распределения вероятности. Тест К-С достаточно прост. N объектов (в нашем случае сделок) нормируются (вычитается среднее значение, и полученная разность делится на стандартное от­клонение) и сортируются в порядке возрастания. Когда мы проходим эти отсор­тированные и нормированные сделки, накопленная вероятность рассматривае­мого количества сделок делится на N. Когда мы берем первую сделку в отсортиро­ванной последовательности с наименьшим стандартным значением, функция распределения вероятности (cumulative density function, далее — ФРВ) равна 1/N. Для каждого стандартного значения, которое мы проходим, приближаясь к наи­большему стандартному значению, к числителю прибавляется единица. В конце последовательности наша ФРВ будет равна N/N, или 1. Для каждого стандартного значения мы можем рассчитать теоретическое рас­пределение. Таким образом, мы можем сравнить фактическую функцию распре­деления вероятности с любой теоретической функцией распределения вероятно­сти. Переменная D, или статистика К-С (К-С statistic), равна наибольшему рас­стоянию между значением нашей фактической функции распределения вероятности и значением теоретического распределения ФРВ при этом же стан­дартном значении. При сравнении фактической ФРВ для данного стандартного значения с теоре­тической ФРВ для этого же стандартного значения мы должны также сравнить теоретическую ФРВ предыдущего стандартного значения с фактической ФРВ те­кущего стандартного значения.

Для того чтобы прояснить эту ситуацию, посмотрим на рисунок 4-1. Отметьте. что в точке А фактическая кривая находится выше теоретической. Поэтому мы сравниваем текущее значение фактической ФРВ с текущим теоретическим значе­нием для нахождения наибольшей разности. Однако в точке В фактическая кри­вая находится ниже теоретической. Поэтому мы сравниваем предыдущее факти­ческое значение с текущим теоретическим значением. Идея состоит в том, что в результате мы выберем наибольшую разность.

Для каждого стандартного значения нам надо взять абсолютное значение разно­сти между текущим значением фактической ФРВ и текущим значением теорети­ческой ФРВ. Нам также надо взять абсолютное значение разности между преды­дущим значением фактической ФРВ и текущим значением теоретической ФРВ. Повторив эту операцию для всех стандартных значений точек, где фактическая ФРВ делает скачок вверх на 1/N, и взяв наибольшую разность, мы определим пе­ременную D.

Рисунок 4-1Тест К-С

Чем ниже значение D, тем больше похожи два распределения. Мы можем преоб­разовать значение D в уровень значимости с помощью следующей формулы:

где SIG = уровень значимости для данного D и N;

D = статистика К-С;

N = количество сделок, по которым определена статистика К-С;

% = оператор, означающий остаток после деления. Здесь J%2 дает остаток после деления J на 2;

ЕХР() = экспоненциальная функция.

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература