Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

Мы получили промежуточное TWR = 1,003667853. Следующим шагом будет воз­ведение этого значения в степень, равную единице, деленной на сумму вероятно­стей. Так как сумма вероятностей составляет 1, то, чтобы получить среднее геометрическое, TWR возведем в степень 1. Таким образом, среднее геометрическое равно в этом случае TWR, то есть 1,003667853. Если, однако, убрать ограничение. что каждый сценарий должен иметь уникальную вероятность, то можно получить сумму вероятностей больше 1. В таком случае, чтобы получить среднее геометри­ческое, надо возвести TWR в степень, равную единице, деленной на эту сумму вероятностей.

Ответ, полученный в нашем примере, является средним геометрическим. соответствующим значению f= 0,01. Теперь перейдем к значению f= 0,02 и по­вторим весь процесс, пока не найдем среднее геометрическое, соответствующее этому f. Мы будем продолжать, пока не дойдем до такого значения f, которое даст наивысшее среднее геометрическое.

В нашем примере наивысшее среднее геометрическое достигается при f=0,57 и равно 1,1106. Разделив возможный результат наихудшего сценария (-$500 000) на отрицательное оптимальное f, мы получим 877 192,35 доллара. Другими словами, если корпорации АБВ надо разместить на рынке новый продукт в этой далекой стране, следует инвестировать именно эту сумму. С течением времени и развитием событий, когда изменятся возможные исходы и вероятности, изменится также и сумма f. Чем чаще корпорация АБВ будет учитывать эти изменения, тем более правильными будут ее решения. Отметьте. что если корпорация АБВ инвестирует в этот проект меньше 877 192,35 доллара. тогда она находится левее пика кривой f. Это аналогично ситуации, когда у трейдера открыто слишком мало контрактов (по сравнению с оптимальным f). Если корпорация АБВ вкладывает в проект большую сумму, это аналогично ситуации, когда у трейдера открыто слишком много позиций.

Количество, рассмотренное здесь, является количеством денег, но это мо­гут быть не только деньги, и метод будет работать. Данный подход можно ис­пользовать для любого количественного решения в среде благоприятной нео­пределенности .

Если вы создадите различные сценарии для фондового рынка, оптимальное f. полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот под­ход даст вам наибольший геометрический рост капитала. Конечно, результат бу­дет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказан­ное ранее об оптимальном f применимо здесь, и это означает также, что ожидае­мые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов. размещенных в соответствии с рассматриваемым сценарием, могут быть потеря­ны в какое-либо время в будущем. Например, вы используете данный метод, что­бы определить сумму средств, предназначенных для инвестирования в акции. До­пустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Други­ми словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торго­вые решения, основываясь на фундаментальных данных. Вы намечаете различ­ные сценарии, которые могут произойти в процессе торговли. Чем больше сцена­риев и чем точнее сценарии, тем лучше будут полученные результаты. Предполо­жим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Концепцию планирования сценария для определения оптимального f можно использовать во многих областях: от военных стратегий до определения оптималь­ного уровня участия в подписке на акции или оптимальной предоплаты за дом. Этот метод, вероятно, является лучшим и уже точно самым легким для тех, кто не использует механические решения при входе и выходе с рынка. Трейдеры, которые торгуют по фундаментальным данным, графикам, волнам Эллиотта или с помо­щью любого другого метода, требующего субъективного суждения, могут найти оп­тимальные f с помощью этого подхода — он намного проще, чем поиск значений параметров распределения. Арифметическое среднее HPR группы сценариев можно рассчитать следую­щим образом:

где N = число сценариев;

А = результат (выигрыш или проигрыш) сценария i;

Р = вероятность сценария i;

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература