При эпидемиях у животных применяется альтернативная стратегия, также понижающая значение реального коэффициента репродукции Re
, – выбраковка. Так, в 2001 году решение о проведении выбраковки было принято в попавшей в тиски ящура Великобритании. Забой зараженных особей позволил сократить инфекционный период с трех недель до нескольких дней, что резко снизило реальный коэффициент репродукции. Однако в этом случае выбраковки только инфицированных животных для борьбы с болезнью было недостаточно. Некоторые возбудители инфекции неизбежно проскальзывали через сеть, заражая тех, кто оказался поблизости. В ответ на это правительство осуществило кольцевую выбраковку, забив скот (инфицированный или нет) в радиусе 3 километров от пораженных ферм. На первый взгляд, убийство неинфицированных особей кажется бессмысленным. Однако оно сокращает поголовье восприимчивых животных в заданном районе, что влияет на значение коэффициента репродукции вируса, а значит, как доказывает математика, замедляет распространение болезни.Очевидно, что в случае активных вспышек человеческих болезней среди не вакцинированных групп населения выбраковка – не вариант. Однако карантин и изоляция могут оказаться чрезвычайно эффективными способами снижения скорости передачи и, следовательно, реального коэффициента репродукции. Изоляция инфекционных больных снижает скорость распространения, в то время как карантин здоровых снижает число восприичивых. Оба действия способствуют уменьшению реального коэффициента репродукции. Так, последняя вспышка оспы в Европе, в Югославии в 1972 году, была быстро взята под контроль с помощью строжайшей изоляции. До 10 тысяч потенциально инфицированных лиц содержались под вооруженной охраной в гостиницах, реквизированных под эти цели, до тех пор, пока не исчезла угроза новых случаев заболевания.
В менее экстремальных случаях наиболее эффективную продолжительность изоляции инфицированных пациентов можно рассчитать при помощи простого математического моделирования [194]
. Математическая модель также может определить, следует ли перевести часть неинфицированного населения на карантин, с учетом связанных с этим расходов и рисков разрастания эпидемии. Такое моделирование приходится очень кстати, когда проведение полевых исследований по распространению болезни нецелесообразно по логистическим или этическим соображениям. Например, лишать какую-либо часть населения жизненно необходимой медицинской помощи во время вспышки заболевания в научных целях просто бесчеловечно. Точно так же в реальном мире нецелесообразно помещать бо́льшую часть населения в карантин надолго. При использовании матмоделей таких проблем не возникает. При помощи математического моделирования можно протестировать модели тотального карантина – или полного отсутствия карантина, или каких-то промежуточных мер – в попытке сбалансировать экономические последствия вынужденной изоляции и то влияние, которое она окажет на распространение болезни.В этом и заключается настоящая красота математической эпидемиологии – в способности тестировать сценарии, невозможные в реальном мире, иногда с неожиданными и пародоксальными результатами. Математика показала, например, что при таких заболеваниях, как ветряная оспа, изоляция и карантин могут оказаться неправильным решением. Попытки изолировать заболевших детей от здоровых вне всякого сомнения вынудят детей и взрослых массово пропускать занятия в школе и работу, чтобы избежать заболевания, которое считается относительно неопасным. Более того, математические модели доказывают, что здоровые дети, переживающие вспышки ветрянки на карантине, могут подхватить болезнь уже в старшем возрасте, когда осложнения, связанные с ветряной оспой, могут быть гораздо более серьезными. А это, пожалуй, даже важнее. Подобные неочевидные эффекты такой, на первый взгляд, разумной стратегии, как изоляция, возможно, никогда не удалось бы понять полностью, если бы в дело не вступила математика.
Если в случае одних заболеваний карантин и изоляция дают неожиданные последствия, то в случае других они просто не работают. Математические модели распространения инфекционных болезней выявили, что эффективность стратегии карантина зависит от момента наибольшей заразности [195]
. Если болезнь особенно заразна на ранних стадиях, когда у пациента нет симтомов, инфицированные могут распространить болезнь на большинство математически ожидаемых жертв, прежде чем их можно будет изолировать. К счастью, в ситуации с лихорадкой Эбола, при вспышке которой многие другие потенциальные пути контроля эпидемии недоступны, большинство случаев передачи инфекции происходит после того, как у жертв заболевания проявляется симптоматика, так что их можно изолировать.