Для проверки проще сначала просчитать вероятность, что дни рождения у всех будут разными. Мы уже использовали такую методику во второй главе, когда вычисляли, сколько маммографий может пройти женщина до того, как вероятность получить ложноположительный диагноз составит более 50 %. У каждой отдельной пары определить вероятность несовпадения дат рождения легко. Первый человек может отмечать свой день рождения в любой из 365 дней в году, а второй – в любой из оставшихся 364 дней. Таким образом, вероятность, что у одной пары людей дата рождения не совпадает, близка к абсолютной и составляет 364/365 (или 99,73 %). Однако поскольку пар всего 253, нам нужно вычислить вероятность того, что ни в одной из оставшихся 252 пар даты рождения тоже не совпадают. Если бы все эти пары были независимы друг от друга, то вероятность несовпадения даты рождения была бы равна результату перемножения вероятности несовпадения даты рождения у одной пары (364/365) на саму себя еще 252 раза, то есть (364/365)253
. Хотя результат деления 364 на 365 достаточно близок к единице, при столь многократном перемножении этого числа на себя вероятность, что ни у одной из пар дни рождения не будет совпадать, оказывается 0,4995, что чуть меньше 1/2. Поскольку в нашем случае есть только два вероятных исхода: даты рождения не совпадают ни у одной из пар или даты рождения совпадают у двух или более человек (математики называют такие связанные варианты исчерпывающим множеством), сумма вероятностей этих двух событий должна составлять единицу. Таким образом, вероятность, что у двух или более человек даты рождения совпадают, составляет 0,5005, то есть чуть более 1/2.В реальности не все пары дней рождения будут независимы друг от друга. Если у человека A дата рождения совпадает с датой рождения человека B, а у того – с датой рождения человека C, то даты рождения в паре A – C тоже совпадают, и, следовательно, не являются независимыми. Если бы они были независимыми, то шанс иметь общую дату рождения у них составлял бы только 1/365. Точный расчет вероятности совпадения с учетом этих зависимостей лишь немногим сложнее, чем при независимых величинах в предыдущем абзаце. При таком расчете мы добавляем людей «в комнату» по одному. Как мы уже установили, для двух человек вероятность несовпадения даты рождения составляет 364/365. Когда к ним добавляется третий, дата рождения каждого из трех может приходиться на любой из оставшихся 363 дней в году (если у кого-то не обнаружится общая дата рождения с кем-то из оставшейся пары). Таким образом, вероятность того, что у трех человек не совпадут даты рождения, составляет (364/365) × (363/365). Четвертому достается уже только 362 дня, поэтому вероятность, что даты рождения не совпадут у четверых, несколько снижается – до (364/365) × (363/365) × (362/365). Этот ряд продолжается до тех пор, пока к вечеринке не присоединится последний, 23-й участник. Его день рождения может выпасть на любой из оставшихся 343 дней. Вероятность того, что ни у кого из 23 человек даты рождения не совпадут, определяется последовательным перемножением:
364/365 × 363/365 × 362/365 ×… ×343/365
Это выражение свидетельствует: точная вероятность, что даты рождения всех 23 человек отличаются (с учетом возможных зависимостей), составляет 0,4927, что чуть меньше 1/2. Используя принцип исчерпывающего множества комбинации величин (утверждающий, что единственными вариантами в нашем случае является либо отсутствие совпадений, либо наличие как минимум одной общей даты рождения), получаем, что вероятность совпадения дат составляет 0,5073, что немного больше 1/2. Если в группе будет 70 человек, количество возможных пар вырастет до 2415. Точный расчет в таком случае дает почти абсолютную вероятность совпадения – 0,999. На рис. 16 показано, как изменяется вероятность того, что два события произойдут в один день, по мере роста числа рассматриваемых независимых событий с одного до ста.