Zhu, B.T.; Conney, A.H. «Functional role of estrogen metabolism in target cells: review and perspectives», Zhu, B.T.; Han, G.Z.; Shim, J.Y.; Wen, Y.; Jiang, X.R. «Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor a and ß subtypes: Insights into the structural determinants favoring a differential subtype binding», https://www.ncbi.nlm.nih.gov/pubmed/16728493
The biological evaluation of depression severity: a novel method for the determination of platelet serotonin concentration. Bezrukov MV1, Shilov IE, Shestakova NV, Kliushnik TP. Zh Nevrol Psikhiatr Im S S Korsakova. 2014; 114 (8): 51–57.
The role of estrogen in mood disorders in women. Payne JL. Int Rev Psychiatry. 2003; 15 (3): 280–290.
Menstrual cycle and appetite control: implications for weight regulation. Dye, L.; Blundell, J.E. Human Reproduction vol. 12, n.° 6, 1142–1151, 1997. https://www.researchgate.net/publication/
13997586_Menstrual_cycle_and_appetite_control_Implications_for_weight_regulationMenstrual cycle and voluntary food intake in young Chinese women. Li ET1, Tsang, L.B.; Lui, S.S. 1999 Aug; 33(1): 109-18. https://www.ncbi. nlm.nih.gov/pubmed/10447983?dopt=Abstract&holding=npg ¿
Síntomas del estreñimiento. FEAD. Disponible en: https://www.saludigestivo.es/wp-content/ uploads/2016/03/sintomas-del-estrenimiento-20141101134801.pdf
Información para pacientes: estreñimiento. Sociedad Catalana de Digestología. Disponible en: http://www.scdigestologia.org/docs/ patologies/es/restrenyiment_es.pdf
LeBlond, R.F.; et al., eds. The abdomen, perineum, anus, and rectosigmoid. In: DeGowin’s Diagnostic Examination. 10th ed. New York, N.Y.: McGraw-Hill Education; 2015. http:// www.accessmedicine.com
.Feldman, M., et al. Gastrointestinal bleeding. In: Sleisenger & Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. 10th ed. Philadelphia, Pa.: Saunders Elsevier; 2016. http://www.clinicalkey.com
Villar del Fresno, A.M.; Carretero Accame, M.E. Semillas de Plantago. Rev Farmacia Profesional 2004; 18(2): 64-69. Escala de Bristol. Disponible en: http://www. agapap.org/druagapap/system/files/ BRISTOL_Escala.pdf
Lewis, S.J.; Heaton, K.W. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol 1997; 32(9): 920-924.
García-Mazcorro, J.F., et al. Caracterización, influencia y manipulación de la microbiota gastrointestinal en salud y enfermedad. Gastroenterol Hepatol 2015; 38(7): 445–466.
Hooper, L.V., et cols. Interactions between the microbiota and the immune system. Science 2012; 336(6086): 1268–1273.
Opazo, C.M., et cols. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9: 432.
Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9: 432.
Icaza-Chávez, M.E. Gut microbiota in health and disease. Rev Gastroenterol Mex. 2013; 78(4): 240–248.
Del Campo-Moreno, R., et al. Microbiota en la salud humana: técnicas de caracterización y transferencia. Enferm Infecc Microbiol Clin. 2018; 36(4): 241–245.
Cani, P.D. Human gut microbiome: hopes, threats and promises. Gut 2018; 67: 1716–1725.
DeGruttola, A.K., et al. Current understanding of dysbiosis in disease in human and animal models. In amm Bowel Dis. 2016; 22: 1137–1150.
Hooper, L.V., et al. Interactions between the microbiota and the immune system. Science 2012; 336(6086): 1268–1273.
Castillo-Álvarez, F.; Marzo-Sola, M.E. Papel de la microbiota intestinal en el desarrollo de la esclerosis múltiple. Neurología 2017; 32(3): 175–184.
Chimenos-Küstner, E., et al. Disbiosis como factor determinante de enfermedad oral y sistémica: importancia del microbioma. Med Clin (Barc). 2017. http://dx.doi.org/10.1016/j. medcli.2017.05.036
Kilian, M.; Chapple, I.L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M., et al. The oral microbiome–An update for oral healthcare professionals. Br Dent J. 2016; 221: 657–666.
Salvo-Romero, E.; et cols. Función barrera intestinal y su implicación en enfermedades digestivas. Rev Esp Enferm Dig 2015; 107: 686–696.
Sánchez de Medina, F.; et cols. Intestinal inflammation and mucosal barrier function. Inflamm Bowel Dis 2014; 20: 2394–2404.
Vancamelbeke, M., Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Rev Gastroenterol Hepatol 2017; 11(9): 821: 834.
Luissint, A.-C., et al. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 2016; 151: 616–632.
Pascual, S.; Martínez, J.; Pérez-Mateo, M. La barrera intestinal: trastornos funcionales en enfermedades digestivas y extradigestivas. Gastroenterol Hepatol 2001; 24: 256–267.
Bischoff, S.C., et cols. Intestinal permeability: a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
Martini, E., et cols. The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 2017; 4: 33–46.
Camilleri, M., et cols. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24(6): 503–512.
The Monash University Low FODMAP Diet. Disponible en: http://www.med.monash.edu/ cecs/gastro/fodmap/description.html
World J Gastroenterol. 2015 Jan 14; 21(2): 600-608. doi: 10.3748/wjg.v21.i2.600. Intervention to increase physical activity in irritable bowel syndrome shows long-term positive effects http://www.med.monash.edu/cecs/ gastro/fodmap/
Rao, S.S.C.; Yu, S.; Fedewa, A. Systematic review: dietary fibre and FODMAP-restricted diet in the management of constipation and irritable bowel syndrome. Aliment Pharmacol Ther. 2015; 41(12): 1256–1270.
Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. J Gastro. 2014 Jan; 146(1): 67–75.e5.
Zugasti Murillo, A.; Estremera Arévalo, F.; Petrina Jáuregui, E. Dieta pobre en FODMAPs (fermentable oligosaccharides, disaccharides, monosaccharides and polyols) en el síndrome de intestino irritable: indicación y forma de elaboración. Rev Endocrinología y Nutrición 2016; 63(3): 132–138.
Harvard Health Publishing. Try a FODMAPs diet to manage irritable bowel syndrome. Disponible en: http://www.health.harvard.edu/ diet-and-weight-loss/a-new-diet-to-manage-irritable-bowel-syndrome
Halmos, E.P.; Christophersen, C.T.; Bird, A.R., et al. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015; 64: 93–100.
Mansueto, P.; Seidita, A.; D’Alcamo, A et al. Role of FODMAPs in Patients With Irritable Bowel Syndrome A Review. Nutr Clin Pract. 2015.
Böhn, L.; Störsrud, S.; Liljebo, T., et al. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterology. 2015; 149(6): 1399–1407.
Martin, L.; Van Vuuren, C.; Seamark, L., et al. Long term effectiveness of short chain fermentable carbohydrate (FODMAP) restriction in patients with irritable bowel syndrome. Gut. 2015; 64(1): A51-A52.
Iacovou, M.; Tan, V.; Muir, J.G.; Gibson, P.R. The Low FODMAP Diet and Its Application in East and Southeast Asia. J Neurogastroenterol Motil. 2015; 21(4): 459–470.
Yoon, S.R.; Lee, J.H.; Lee, J.H., et al. Low-FODMAP formula improves diarrhea and nutritional status in hospitalized patients receiving enteral nutrition: a randomized, multicenter, double-blind clinical trial. Nutrition Journal. 2015; 14(1): 1-1.
Gibson, P.R.; Muir, J.G.; Newnham, E.D. Other dietary confounders: FODMAPS et al. Dig Dis. 2015; 33(2): 269–276.
Hayes, P.A., et cols. Irritable bowel syndrome: the role of food in pathogenesis and management. Gastroenterol Hepatol 2014; 10(3): 164–174.
Lee, B.J.; Bak, Y.T. Irritable bowel syndrome, gut microbiota and probiotis. J Neurogastroenterol Motil 2011; 17(3): 252–266.
Mearin, F. Diagnóstico del síndrome del intestino irritable: criterios clínicos y biomarcadores. Elsevier: 2016; (8): 121–133.
Mearin, F., et cols. Guía de práctica clínica del síndrome del intestino irritable con estreñimiento y estreñimiento funcional en adultos: tratamiento (Parte 2 de 2). Rev Atención Primaria 2017; 49(3): 177–194.
Zugasti Murillo, A. Intolerancia alimentaria. Rev Endocrinología y Nutrición 2009; 56(5): 241–250.
Fedewa, A.; Rao, S.S. Dietary fructose intolerance, fructan intolerance and FODMAPs. Curr Gastroenterol Rep, v. 16, n.° 1, 370, Jan 2014. ISSN 1522-8037.
Shepherd, S.J.; Gibson, P.R. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J Am Diet Assoc, v. 106, n.° 10, 1631-1639, Oct 2006. ISSN 0002-8223 (Print) 0002-8223.
Skoog, S.M.; Bharucha, A.E. Dietary fructose and gastrointestinal symptoms: a review. Am J Gastroenterol, v. 99, n.° 10, 2046-2050, Oct 2004. ISSN 0002-9270 (Print) 0002-9270.
Varney, J., et al. FODMAPs: food composition, defining cutoff values and international application. J Gastroenterol Hepatol, v. 32, Suppl 1, 53-61, Mar 2017. ISSN 0815-9319.
Jianqin, S.; Leiming, X.; Lu, X.; Yelland, G.W.; Ni, J.; Clarke, A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr J. 2016 Apr 2; 15: 35.
Bartley, J.; McGlashan, S.R. Does milk increase mucus production? Med Hypotheses. 2010 Apr; 74(4): 732–734.
Trivedi, M.S.; Shah, J.S.; Al-Mughairy, S.; Hodgson, N.W.; Simms, B.; Trooskens, G.A.; Van Criekinge, W.; Deth, R.C. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J Nutr Biochem. 2014 Oct; 25(10): 1011.
Brooke-Taylor, S.; Dwyer, K.; Woodford, K.; Kost, N. Systematic Review of the Gastrointestinal Effects of A1 Compared with A2 ß-Casein. Adv Nutr 2017; 8(5): 739–748.
Zugasti Murillo, A. Intolerancia alimentaria. Rev Endocrinología y Nutrición 2009; 56(5): 241–250.
Sensibilidad al gluten no celiaca. FACE 2016. Disponible en: https://celiacos.org/sensibilidad-al-gluten-no-celiaca/
Molina-Infante, J.; Santolaria, S.; Montoro, M.; Esteve, M.; Fernández-Bañares, F. Sensibilidad al gluten no celiaca: una revisión crítica de la evidencia actual. Rev Gatroent y Hepatol 2014; 37(6): 362–371.
Biesiekierski, J.R. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 2013; 145(2): 320–328.
Reig-Otero, Y.; Mañes, J.; Manyes i Font, L. Sensibilidad al gluten no celiaca (SGNC): manejo nutricional de la enfermedad. Nutr Clin Diet Hosp 2017; 37(1): 171–182.
Miazga, A.; Osiński, M.; Cichy, W.; Żaba, R. Current views on the etiopathogenesis, clinical manifestation, diagnostics, treatment and correlation with other nosological entities of SIBO. Adv Med Sci 2015; 60(1): 118–124.
Chedid, V., et cols. Herbal therapy is equivalent to rifaximin for the treatment of small intestinal bacterial overgrowth. Glob Adv Health Med 2014; 3(3): 16–24.
Quigley, E.M. Small intestinal bacterial overgrowth: what it is and what it is not. Curr Opin Gastroenterol 2014; 30(2): 141–146.
Gibson, P.R.; Shepherd, S.J. Evidence based dietary management of functional gastrointestinal symptoms: The FODMAP approach. Journal of gastroenterology and hepatology 2012; 25(2): 252–258.
Rahimi, R.; Nikfar, S.; Abdollahi, M. Induction of clinical response and remission of inflammatory bowel disease by use of herbal medicines: a meta-analysis. World J Gastroenterol 2013; 19(34): 5738–5749.
Lauritano, E.C. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am J Gastroenterol 2008; 103(8): 2031-2035.
Zhong, C.; Qu, C.; Wang, B.; Liang, S.; Zeng, B. Probiotics for Preventing and Treating Small Intestinal Bacterial Overgrowth: A Meta-Analysis and Systematic Review of Current Evidence. J Clin Gastroenterol 2017; 51(4): 300–311.
Bento, C., et cols. Mammalian Autophagy, how does it work? Annual Review of Biochemistry 2016; 85: 685-713.93.
Horne Benjamín, D., et cols. Health ffects of intermittent fasting: hormesis or harm? A systematic review. The American Journal of Clinical Nutrition 2015; 102: 464–470.
Pimentel, M., et cols. Lower Frequency of MMC Is Found in IBS Subjects with Abnormal Lactulose Breath Test, Suggesting Bacterial Overgrowth. Dig Dis Sci 2002; 47: 2639.
Choi, J. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 2014; 40(6): 924–935.
Sciarretta, S.; Boppana, V.S.; Umapathi, M.; Frati, G.; Sadoshima, J. Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc Diagn Ther 2015; 5(5): 394–402.
Horne, B.D. Randomized cross-over trial of short-term water-only fasting: metabolic and cardiovascular consequences. Nutr Metab Cardiovasc Dis 2013; 23(11): 1050–1057.
Varady, K.A. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev 2011; 12(7): 593–601.
Varady, K.A.; Bhutani, S.; Church, E.C.; Klempel, M.C. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am J Clin Nutr 2009; 90(5): 1138–1143.
Aksungar, F.B.; Topkaya, A.E.; Akyildiz, M. Interleukin-6, C-reactive protein and biochemical parameters during prolonged intermittent fasting. Ann Nutr Metab 2007; 51(1): 88–95.
Teng, N.I., et cols. Efficacy of fasting calorie restriction on quality of life among aging men. Physiol Behav 2011; 104(5): 1059–1064.
Ohkawara, K.; Cornier, M.A.; Kohrt, W.M.; Melanson, E.L. Effects of increased meal frequency on fat oxidation and perceived hunger. Rev Obesity 2013; 21(2): 336–343.
Endocrin Society 2018. Consuming low-calorie sweeteners may predispose overweight individuals to diabetes. Disponible en: https://www.endocrine. org/news-and-advocacy/news-room/2018/consuming-lowcalorie-sweeteners-may-predispose-overweight-individuals-to-diabetes
Lofvenborg, J.E., et cols. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes. European J of Endocrinol 2016; 175(6): 605–614.
BMJ 2013. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. Recuperado de: https://www.bmj. com/content/346/bmj.e7492?fbclid=IwAR1sBHKeAXRScS-kl4XaVUOcI8WHsBd27BNN2bIscWFaMTyTkPdnvAs_IzU
Basaranoglu, M.; Basaranoglu, G.; Bugianesi, E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr. 2015 Apr; 4(2): 109–116.
Te Morenga, L.A.; Howatson, A.J.; Jones, R.M.; Mann, J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014 Jul; 100(1): 65–79.
Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern Med. 2014 Apr; 174(4): 516-524
Vos, M.B., et cols. Added Sugars and Cardiovascular Disease Risk in Children. Circulation. 2017 May 9; 135(19): e1017–e1034.
Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence. Physiol Behav. 2010 Apr 26; 100(1): 47–54.
Moynihan, P.J.; Kelly, S.A. Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J Dent Res. 2014 Jan; 93(1): 8–18.
Gao, Y., et cols. Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab. 2017 Aug; 6(8): 897–908.
Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008; 32(1): 20–39.
AECOSAN. Recomendaciones de consumo de pescado por presencia de mercurio (2019) Recuperado de: http://www.aecosan.msssi. gob.es/AECOSAN/docs/documentos/publicaciones/seguridad_alimentaria/RECOMENDACIONES_consumo_pescado_MERCURIO_AESAN_WEB.PDF
Diario oficial de la Unión Europea. Decisión (UE) 2019/639 del Consejo. Recuperado de: https://eur-lex.europa.eu/legal-content/ES/ TXT/PDF/?uri=CELEX:32019D0639&from=EN
AECOSAN. ANISAKIASIS (2018). Recuperado de: http://www.aecosan.msssi.gob.es/ AECOSAN/web/seguridad_alimentaria/ subdetalle/anisakis.htm
Aranceta Bartrina, J., et cols. Guía de la alimentación saludable para atención primaria y colectivos ciudadanos. SENC. Disponible en: https://www.nature.com/ articles/nm.3145
Wang, M.X.; Wong, C.H.; Kim, J.E. Impact of whole egg intake on blood pressure, lipids and lipoproteins in middle-aged and older population: A systematic review and meta-analysis of randomized controlled trials. Volume 29, Issue 7, July 2019, Pages 653-664.
The American Journal of Clinical Nutrition, Volume 107, Issue 6, June 2018, Pages 853–854. Goodbye to the egg-white omelet-welcome back to the whole-egg omelet. Disponible en: https://academic.oup.com/ajcn/article /107/6/853/5032667
Richard, C.; Cristall, L.; Fleming, E.; Lewis, E.D.; Ricupero, M.; Jacobs, R.L.; Field, C.J. Impact of Egg Consumption on Cardiovascular Risk Factors in Individuals with Type 2 Diabetes and at Risk for Developing Diabetes: A Systematic Review of Randomized Nutritional Intervention Studies. Can J Diabetes. 2017 Aug; 41(4): 453-463.
Assunção, M.L.; Ferreira, H.S.; dos Santos, A.F.; Cabral, C.R Jr.; Florêncio, T.M. Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. Lipids. 2009 Jul; 44(7): 593-601.
Xue, C.; Liu, Y.; Wang, J.; Zhang, R.; Zhang, Y.; Zhang, J.; Zhang, Y.; Zheng, Z.; Yu, X.; Jing, H.; Nosaka, N.; Arai, C.; Kasai, M.; Aoyama, T.; Wu, J. Consumption of medium– and long-chain triacylglycerols decreases body fat and blood triglyceride in Chinese hypertriglyceridemic subjects. Eur J Clin Nutr. 2009 Jul; 63(7): 879-886.
Liu, Y.M. Medium-chain triglyceride (MCT) ketogenic therapy. Epilepsia. 2008 Nov; 49 Suppl 8: 33-6.
St-Onge, M.P.; Jones, P.J. Greater rise in fat oxidation with medium-chain triglyceride consumption relative to long-chain triglyceride is associated with lower initial body weight and greater loss of subcutaneous adipose tissue. Int J Obes Relat Metab Disord. 2003 Dec; 27(12): 1565-1571.
Indian Journal of Clinical Biochemistry 2000. Lipid peroxidation in culinary oils subjected to thermal stress. Disponible en: https://link. springer.com/article/10.1007%2FBF02873539
Ruzin, A.; Novick, R.P. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. J Bacteriol. 2000 May; 182(9): 2668–2671.
Redondo-Cuevas, L.; Castellano, G.; Torrens, F.; Raikos, V. Revealing the relationship between vegetable oil composition and oxidative stability: A multifactorial approach. Volume 66, March 2018, 221–229.
Journal of the American Oil Chemists’ Society 2015. The Properties of Lauric Acid and Their Significance in Coconut Oil. Disponible en: https://link.springer.com/article/10.1007/s11746– 014-2562-7
Nutrition and metabolism. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. Disponible en: https:// bmjopen.bmj.com/content/8/3/e020167
American Society for Nutritional Sciences. Physiological Effects of Medium-Chain Triglycerides: PotentialAgents in the Prevention of Obesity.
Nelson, D.L.; Cox, M.M. (2014) Lehninger. Principios de Bioquímica. Ediciones Omega. European Chemicals Agency (2017)
Bisfenol A. Recuperado de: https://echa.europa.eu/es/ hot-topics/bisphenol-a European Food Safety Authority (EFSA) (2017)
Plan BPA listo para la nueva evaluación EFSA en 2018. Recuperado de: http://www.efsa. europa.eu/en/press/news/bpa-plan-readynew-efsa-assessment-2018
Herrero Carcedo, C. (2018) Disruptores endocrinos. Independently published.