Читаем Мёртвая вода. Часть 2 полностью

Именно по этой причине, т.е. для поддержания необходимой глобальному надиудейскому предиктору функциональной недееспособности при решении многопараметрических задач управления (и разработки технологий и продукции) линейное программирование и некоторые другие разделы математики, допускающие их такого рода приложение, не только исключены из типичного вузовского курса в СССР[140], но даже вообще не упоминаются в них. Поэтому в нашей стране с линейным программированием и аналогичного назначения другими разделами математики знакомы содержательно-методоло­ги­чески только математики-абстракционисты, прошедшие через университетский курс высшей математики. А весьма малое число специалистов иных отраслей знания и техники просто бездумно натасканы на сложившиеся и ставшие традиционными прикладные интерпретации математического аппарата. В связи с этим пробелом в образовании большинства даже не-гуманитариев, прежде чем говорить о прикладных интерпретациях аппарата линейного программирования, поговорим о его существе.

В трехмерном пространстве линейное уравнение с тремя неизвестными:  a1x1 + a2x2 + a3x3 + b = 0 — задает плоскость. Два уравнения задают две плоскости и, если плоскости пересекаются, то и прямую линию — линию их пересечения. Каждая плоскость рассекает полное бесконечное во все стороны пространство на два “полупрос­тран­ства”, подобно тому, как удар ножом рассекает картофелину пополам. Замена знака равенства ( = ) в уравнении плоскости на знак неравенства (< , > , £ , ³ ) есть выбор одного из полупространств, определяемых плоскостью, и изъятие из рассмотрения второго. При этом строгое неравенство ( < , > ) исключает из избранного полупространства секущую полное пространство плоскость, а нестрогое ( £ , ³ ) включает секущую плоскость в избранное полупространство (т.е. “нож” остается прилепленным к одной из половинок “картофелины”).

Много неравенств — это вырезание бесконечно простирающимися плоскостями из полного пространства некоторой области. Геометрически такая область — многогранник.

В n‑мерном пространстве всё точно также. Линейное уравнение n переменных определяет подпространство размерностью n ‑ 1 , называемое гиперплоскостью. Много неравенств в n‑мерном пространстве вырезают из него гиперплоскостями n‑мерную область. Эта область является n-мерным многогранником; причем выпуклым многогранником. Свойство выпуклости означает, что всякие две точки на поверхности, ограничивающей многогранник, могут быть соединены отрезком прямой линии, и все точки этого отрезка будут принадлежать либо внутренности этого многогранника, либо ограничивающей его поверхности.

Картофелина после её обрезки ножом — трехмерный эквивалент такого n-мерного многогранника. Свойство выпуклости проявляется в том, что, если из любой точки на её поверхности картофелину проткнуть прямолинейной спицей в произвольном направлении, то спица войдет в картофелину и выйдет из неё только по одному разу: т.е. одно пронзание спицей картофелины на её поверхности оставляет только две дырки.

Аргумент Z функции Min(Z) критерия оптимальности — также линейная функция n переменных:

Z = rTXK = (r1 , r2 , ... , rn)(XK 1 , XK 2 , ... , XK n)T =

= r1XK 1 + r2XK 2 + ... + rnXK n .

То есть скалярное произведение векторов rTXK в ортогональном базисе — также уравнение гиперплоскости. Её направленность в пространстве определяется набором коэффициентов r1 , r2 , ... , r. При этом вектор r=(r1 , r2 , ... , rn)T ортогонален (т.е. перпендикулярен) к гиперплоскости, задаваемой уравнением Z = rT XK . Удаленность гиперплоскости от начала системы координат обусловлена значениемZ , являющимся свободным членом уравнения rT XK - Z = 0. При численно не определенном значении свободного члена Z этого уравнения пространство заполнено “пакетом” параллельных гиперплоскостей, каждая из которых “касается” соседних с нею двух. В трехмерной аналогии это — “слоеный вафельный торт”, в котором исчезающе тонкие вафли и прослойки начинки между ними — плоскости, различимые по значению Z каждой из них.

В задаче линейного программирования координаты точек, т.е. конкретный набор значений XK 1 , XK 2 , ... , XK n , определяющий значение аргумента Z = rT XK  критерия оптимальности Min(Z), могут выбираться только из области, вырезанной  всем набором неравенств-ограничений из n-мерного пространства.

Перейти на страницу:

Все книги серии От «социологии» к жизнеречению

Похожие книги

Остров Россия
Остров Россия

Россия и сегодня остается одинокой державой, «островом» между Западом и Востоком. Лишний раз мы убедились в этом после недавнего грузино-осетинского конфликта, когда Москва признала независимость Абхазии и Южной Осетии.Автор книги, известный журналист-международник на основе материалов Счетной палаты РФ и других аналитических структур рассматривает внешнеполитическую картину, сложившуюся вокруг нашей страны после развала СССР, вскрывает причины противостояния России и «мировой закулисы», акцентирует внимание на основных проблемах, которые прямо или косвенно угрожают национальной безопасности Отечества.Если завтра война… Готовы ли мы дать отпор агрессору, сломить противника, не утрачен ли окончательно боевой дух Российской армии?..

Владимир Викторович Большаков

Политика / Образование и наука