— создание элементаризма нового типа, основанного на понимании химического элемента как «последнего предела, достигаемого анализом», как существующего и в свободном, и в химически связанном состояниях материального тела, носителя определенного и, как правило, достаточно узкого круга свойств.
В области математической физики важнейшие результаты были получены при разработке проблем механики (в том числе и небесной механики) и оптики. Абсолютное лидерство в сфере математики и естествознания на протяжении почти всего XVIII столетия принадлежало Франции. Кроме того, особое место в развитии математики и математической физики XVIII в. занимает творчество Л. Эйлера и представителей семейства Бернулли — выходцев из Швейцарии, живших и работавших в разных странах, в том числе и в России.
Французское математическое сообщество начало формироваться еще в конце XVII века под влиянием Лейбница и братьев Якоба I и Иоганна I Бернулли, а также благодаря усилиям Н. Мальбранша (1638–1715) и членов его «кружка», из которых наибольшую известность получили Г.Ф.А. де Лопиталь (1661–1704) и П. Вариньон (1654–1722). Лейбниц во время своего пребывания в Париже в 1672 г. неоднократно встречался с Мальбраншем и обсуждал с ним философские и математические вопросы. Спустя два года Мальбранш стал профессором математики в Оратории Христа, собрав вокруг себя группу талантливых математиков. Конгрегация ораторианцев (Оратории Христа) возникла в Риме в 1558 г. В капелле при госпитале, основанном Филиппо Нери, по его инициативе стали собираться для совместного чтения и толкования священных книг духовные лица, не приносившие монашеских обетов. Эта конгрегация (утвержденная в 1575 г.) в 1611 г. распространила свою деятельность на Францию. Ораторианцы (особенно французские) получили известность благодаря своим работам в области философии, математики и естествознания. Хотя сам Мальбранш не внес сколь-нибудь заметного вклада в математику, он и члены его группы много сделали для распространения «новой математики» (т. е. дифференциального и интегрального исчислений, аналитической геометрии), созданной трудами Лейбница, Ньютона и Декарта. В 1696 г. Лопиталь, используя идеи И. Бернулли, опубликовал первый учебник по математическому анализу, излагавший новый метод в применении к теории плоских кривых.
Важная особенность работ братьев Бернулли, Вариньона и других математиков конца XVII — начала XVIII в. состояла в том, что они, как правило, не ограничивались чисто математической стороной вопроса, но применяли методы математического анализа к проблемам механики, в том числе и к теории движения небесных тел, оптики, гидродинамики и к другим дисциплинам. Например, Вариньон разработал методы графической статики, в 1698 г. он предложил концепцию «скорости в любой момент», которая в наши дни известна как «мгновенная скорость»; спустя без малого два года он сформулировал математическое определение понятия «ускоряющей силы» (т. е. ускорения), согласно которому ускорение является производной мгновенной скорости по времени. Позднее к этим вопросам обратился Л. Эйлер. В 1707 г. Вариньон начал свои исследования движения тела в сопротивляющейся среде.
В итоге, в работах указанных авторов были заложены основы аналитической (рациональной по терминологии того времени) механики, развитой затем в трудах Ж. Даламбера, Ж.Л. Лагранжа, Л. Эйлера и др. Без этого важнейшего научного достижения века Просвещения все последующие крупнейшие открытия в естествознании XIX–XX вв. (электродинамика Дж. Максвелла, теория относительности А. Эйнштейна, квантовая механика и др.) были бы немыслимы.
Этот вывод можно проиллюстрировать десятками примеров. Ограничимся двумя, связанными с именем Леонарда Эйлера (1707–1783), пожалуй, самой крупной фигуры в науке XVIII столетия. В 1753 г. Эйлер усовершенствовал теорию движения Луны. На основе его работ гёттингенским астрономом Тобиасом Майером (1723–1762) были составлены лунные таблицы, которые использовались мореплавателями до 1823 г. Однако затем Эйлер пришел к выводу, что необходимо создать другую теорию Луны. Эта вторая лунная теория Эйлера (1772) была оценена по достоинству только спустя сто лет, когда американский математик и астроном Дж. Хилл, опираясь на методику Эйлера, заложил основы современной теории движения Луны.
Другой пример. В 1752 г. Эйлер доказал теорему, утверждающую, что для любого выпуклого многогранника (тетраэдра, октаэдра, икосаэдра и т. д.) числа его граней (Г), ребер (Р) и вершин (В) связаны простым соотношением: В — Р + Г = 2. Именно знакомство с этой теоремой помогло первооткрывателям молекулы фуллерена С60
(1985)[9], которая стала первым примером углеродного кластера, открывшего новый мир наномерных структур, осознать результаты своих экспериментов и сформулировать гипотезу о структуре фуллеренов.