Об «электронной жидкости» можно говорить лишь весьма условно. На самом деле эта «жидкость» состоит из пар электронов, образующих нечто вроде атомов *). Хотя два электрона отталкиваются электрическими силами, между ними есть притяжение за счет их взаимодействия с кристаллической решеткой. Если притяжение достаточно сильное, то образуются «атомы» из двух электронов, называемые куперовскими парами (идею о существовании таких «атомов» в сверхпроводниках впервые высказал в 1956 г. молодой американский физик Леон Купер). До того как появились куперовские пары, все попытки теоретического объяснения сверхпроводимости были безуспешными. Эта идея открыла путь к полному решению загадки сверхпроводимости.
*) Эти «атомы» вне сверхпроводника не существуют и не являются обычными частицами, их называют квазичастицами. Впрочем, и сами электроны в металле также являются квазичастицами, их свойства довольно сильно отличаются от свойств свободных электронов.
Автор присутствовал на заседании руководимого Л. Д. Ландау теоретического семинара, на котором Н. Н. Боголюбов рассказывал о своем варианте теории сверхпроводимости, полученном независимо от Бардина, Купера и Шриффера. Он вспоминал, что несколько раз пытался применить свои методы, успешно сработавшие в теории сверхтекучести, и к объяснению сверхпроводимости, но сверхпроводимость не получалась, чего-то не хватало. Как только ему стала известна работа Купера, он нашел свои старые расчеты, ввел пары и очень быстро получил решение проблемы.
Читатель, желающий подробнее ознакомиться с этими замечательными явлениями, может обратиться к книге В. С. Эдельмана «Вблизи абсолютного нуля» (М.: Наука, 1983. Библиотечка «Квант», вып. 26). Здесь мы скажем только несколько слов о вихрях, многие интересные свойства которых были открыты американским физиком Р. Фейнманом. Вихри в сверхтекучем гелии устроены примерно так же, как в идеальной жидкости Эйлера. Самое важное отличие состоит в том, что «сила» отдельного вихря квантована! Точный смысл этого утверждения состоит в следующем. Если в сверхтекучем гелии есть прямолинейная вихревая нить
*) Там, где скорость распределена по такому закону, движение не вихревое. Это можно доказать точно так жe, как мы доказали, что при
Подобные вихри могут возникать и в некоторых сверхпроводниках. Так как «электронная жидкость» переносит заряд, то при ее движении возникает электрический ток, а следовательно, и магнитное поле. С вихрем в сверхпроводнике поэтому должно быть связано магнитное поле, сосредоточенное в трубке, окружающей нить
Существуют, однако, сверхпроводники второго рода (например ниобий), которые реагируют на приложенное к ним магнитное поле иначе. Достаточно сильное магнитное поле может проникнуть в сверхпроводник второго рода, но только в виде вихревых нитей. Магнитное поле как бы «просверливает» себе отверстия в толще сверхпроводящей жидкости. Вблизи вихря, где магнитное поле максимально, остается только нормальная электронная жидкость, а в сверхпроводящей жидкости циркулируют незатухающие токи, не выпускающие поле за пределы трубки. Из-за того что электронная жидкость заряжена, вихрь в сверхпроводнике несколько отличается от вихря в жидком гелии — скорости сверхпроводящих электронов убывают при увеличении