Читаем Многоликий солитон полностью

В ней самое важное для нас — мысль о том, что «пустое место», «дырка» в решетке, может перемещаться по кристаллу подобно частице *)! Этот вывод высказан уже в работе 1926 г.: «Принимая во внимание подвижность дырок, можно рассматривать их как своего рода «отрицательные атомы...»

*) См. книгу: Бокштейн, Б. С. Атомы блуждают по кристаллу. — М.: Наука, 1984. — Библиотечка «Квант», вып. 28.

Представление о дырке как частице оказалось исключительно плодотворным. Вскоре понятие о дырке в «море» заполненных состояний было применено П. Дираком для создания теории антиэлектронов, т. е. позитронов. Фундаментальную роль играет идея о «дырках» и в теории полупроводников. Конечно, вполне оценить значение такой простой, но парадоксальной идеи о «дырках» в свое время было не так-то просто. Лишь дальнейшие исследования выявили всю ее глубину. Такой же была судьба и многих других идей Френкеля, в том числе и модели Френкеля — Конторовой.

Атомная модель движущейся дислокации

по Френкелю и Конторовой

...что такое теория? Неспециалисту бросается в глаза...

что она окружена грудой формул, ничего не говорящих

непосвященному. Но эти формулы не составляют ее

существо.

Л. Больцман

Солитон, или дислокация ФК, — это особого рода дефект в кристаллической структуре твердого тела. Если стремиться к точности, то лучше сказать, что это модель такого дефекта в простейшей мыслимой модели (карикатуре) твердого тела. Забегая вперед, сразу скажем, что эта карикатура очень удачная и позволяет качественно понять многие свойства реальных твердых тел.

Предельный случай дислокации (от лат. dislocatio — смещение) — это «дырка» в кристаллической решетке. Как уже говорилось, такая дырка может перемещаться по кристаллу. Перемещение затрудняется тем, что для переброса какого-нибудь соседнего атома на пустое место нужно сначала его достаточно сильно «раскачать», чтобы он мог оторваться от окружающих его атомов. Гораздо легче перемещается дефект, в котором атомы вокруг «дырки» также смещены. Такой дефект и есть дислокация.

Совсем простую модель дислокации можно сделать так. Представим себе периодическую последовательность горок и ложбинок (см. рис. 6.1, α). Пусть в ложбинках лежат шарики, связанные упругими пружинками. Эти шарики изображают слой «атомов», а пружинки изображают силы, связывающие атомы этого слоя друг с другом. Атомы, изображенные шариками, на самом деле взаимодействуют с атомами другого слоя, изображенными крестиками. Вместо сил взаимодействия верхнего слоя с нижним мы построили горки, изображающие это взаимодействие. Атомы нижнего слоя считаются неподвижными.

Ясно, что в этой системе не может быть просто «дырки», т. е. не может случиться так, чтобы одна ямка была пустой, а во всех остальных атомы лежали бы на дне. Вместо этого равновесие может установиться в состоянии, изображенном на рис. 6.1, б. Это и есть дислокации Френкеля — Конторовой. Если в центре каждой ямки отложить по вертикальной оси смещение каждого атома (рис. 6.1, в), то ясно видно, что огибающая кривая напоминает график движения маятника, соответствующего сепаратрисе (рис. 4.10) *). Чуть позже мы убедимся, что слово «напоминает» можно заменить на «совпадает», если дислокация простирается на расстояние, много большее расстояния между атомами.



В предельном случае, когда пружинки очень мягкие, дислокация ФК превращается в «дырку» по Френкелю.

*) Такие движения называют «асимптотическими», имея в виду, что график движения приближается к прямой, соответствующей положению равновесия, подобно тому как гипербола приближается к своей асимптоте.

На рис. 6.1, б и в изображена дислокация, в которой вблизи точки О «меньше» атомов, чем в недеформированном состоянии (рис. 6.1, α). Может случиться так, что вместо этого образуется «сгущение» атомов, как изображено на рис. 6.1, г и д. График смещений атомов в такой дислокации также соответствует асимптотическому движению маятника, но в обратном направлении. В предельном случае мягких пружин получается состояние, в котором одна ямка содержит лишний атом.

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги