Читаем Многоликий солитон полностью

которая легко получается заменой в формуле (6.9) отношения v/v0 на (λω/λ0ω0).

Отсюда сразу видно замечательное свойство этого закона дисперсии — частота распространяющихся по цепочке волн всегда выше частоты ω0, с которой колебался бы каждый атом цепочки вблизи своего положения равновесия, если бы он находился только под действием «подкладки». Физически очевидно, что частота ω0 достигается при очень большой длине волны, когда соседние атомы смещаются без изменения относительно расстояния (как твердое тело). При этом пружины настолько слабо деформируются, что их как бы и нет.

Другое свойство закона дисперсии (6.9) роднит его с гравитационными волнами на глубокой воде. Мы видим, что фазовая скорость v(λ) увеличивается с увеличением длины волны. Правда, эта зависимость несколько иная — скорость очень длинных волн на воде пропорциональна , а скорость волн смещения пропорциональна λ (при λ λ0). Тем не менее можно считать, что природа прохождения дисперсии в обоих случаях качественно сходна. Во всяком случае, найденная нами дисперсия волн смещения в атомной цепочке не связана с ее дискретной структурой, которая может проявиться лишь при очень малых длинах волн, порядка постоянной решетки

α.

При выводе закона дисперсии мы, в сущности, с самого начала пренебрегали дискретной структурой, предполагая, что α  λ и α  λ0. Нетрудно проверить, что λ0 = 2πl0 (проверьте!). Поэтому при α  λ0 будет также выполнено условие α

 l0, т. е. размер дислокации l0 должен быть большим по сравнению с межатомным расстоянием. Отсюда ясно, что дефект по Френкелю, размер которого примерно равен α, нельзя описать с помощью изложенной здесь теории. Если, однако, не гнаться за точностью, то можно считать дефект по Френкелю просто дислокацией малого размера l0, сравнимого с α. Описание при этом будет качественно правильным.

Если это не вполне понятно, нужно вспомнить начало предыдущей главы, где описаны колебания системы из двух и трех грузиков, соединенных пружинками. Эти колебания соответствуют стоячим волнам сплошной резинки (рис. 5.4 и 5.5), но только нельзя рассматривать волны с длиной, меньшей 2α. Более точное описание дефекта по Френкелю можно найти с помощью исходного уравнения (6.1). Если пружины очень мягкие, т. е. если

 f0, то существует равновесное состояние, в котором один из атомов смещен примерно на α, а все остальные смещены мало (попробуйте это проверить самостоятельно!). Это и есть дефект по Френкелю.

Раз уж мы вспомнили переход от цепочки атомов к сплошной среде, стоит написать, во что превратится при таком переходе основное уравнение (6.1). Как и при выводе уравнения Д'Аламбера, можно считать, что второй член в правой части перейдет в 2y". Переходя от y(t, х

) к φ(t, х) (вспомните вывод уравнений (6.4), (6.5), найдем в результате, что



Если  ω0 = 0, то из этого уравнения получается уравнение Д'Аламбера.

К уравнению (6.11) приклеилось странное название — уравнение «синус-Гордона». Происхождение этого жаргонного наименования связано с тем, что при значениях φ, мало отличающихся от π, т. е. φ = π + ψ, гдеоно переходит в уравнение



Это, а если говорить совсем точно, несколько более общее уравнение было предложено в 1926 г. Э. Шрёдингером, О. Клейном, В. Гордоном и В. А. Фоком, и обычно физики для краткости называют его уравнением Клейна — Гордона. Подобное стремление к укорочению названий породило и сочетание «синус-Гордона».

Перейти на страницу:

Все книги серии Библиотечка Квант

Похожие книги