«Мир дхарм ши это мир явлений, которые изменчивы, многообразны, отличны друг от друга, все события и предметы этого мира взаимосвязаны. Мир дхарм не является миром сущностей, неизменных и вечных. Этот мир есть некоторая единая субстанция. И оба мира неотделимы друг от друга, взаимозависимы, образуют единое неразрывное целое. Ши и ли взаимно обусловлены,
В этой позиции предугаданы многие законы, которые позже стали изучаться в диалектической логике. В настоящее время эта логика находится в стадии становления, в стадии поиска формального аппарата, который позволил бы ей достичь того же уровня формализации, который достигнут в формальных логиках, отражающих человеческие рассуждения о мире явлений, в котором нет диалектических переходов. Но уже в древности философы и мыслители пытались в своих логических построениях преодолеть статичность и метафизичность описываемого мира и выдвигать положения, подобные тем, которые приняты в философской системе хуаянь или сформулированы в древнеиндийской сутре Ланкаватра: «Вещи не такие, как они выглядят, но и не другие».
Попытки ввести диалектику в схемы логических рассуждений делались, конечно, не только на Востоке, но и в Европе. Достаточно вспомнить Гегеля с его диалектическим методом. Но до сих пор так и не удалось создать формальную систему, в рамках которой описывались бы законы рассуждения, опирающиеся на диалектику. Это дело будущего. И, возможно, для этого потребуется расширение самого понятия формальной системы.
А сейчас мы переходим к описанию двух мощных формальных дедуктивных систем, порожденных наукой Нового времени. Именно эти системы впервые позволили автоматизировать ряд характерных для человека способов рассуждений, опирающихся на схему дедуктивного вывода.
Глава третья. АВТОМАТИЗАЦИЯ ДОСТОВЕРНЫХ РАССУЖДЕНИЙ
Исчисление высказываний
Под
Не всякие фразы на естественном языке могут быть высказываниями. Например, утверждение «Девушка была очень красивой» таковым не является. Одни мужчины могут согласиться с мнением, высказанным в этой фразе, т.е. посчитать, что это утверждение истинно, но другие могут и не принять данной точки зрения, т.е. посчитать утверждение ложным. Такого рода утверждения в рамках формальной системы, называемой
О формальной системе речь шла во второй главе, и читатели, наверное, помнят, что такие системы задаются как четверки, состоящие из множества базовых элементов