Читаем Моделирование рассуждений. Опыт анализа мыслительных актов полностью

Под предикатом будем понимать некоторую связь, заданную на наборе из констант или переменных, например утверждение «? больше ?». Если семантика ? и ? не задана, то о предикате сказать особенно нечего. Пожалуй, только то, что он задает двуместное отношение, семантика которого такова, что оно является антирефлексивным (неверно, что «? больше ?»), асимметричным и транзитивным. Но при задании семантики (т.е. областей определения переменных ? и ?) о предикате можно будет сказать существенно больше. Если ? и ? – площади городов соответственно в СССР и Японии, то при задании списков городов и означивании переменных константами мы получим отношение между двумя высказываниями типа «Площадь Вологды больше площади Токио» или «Площадь Ленинграда больше площади Нары». После этого становится возможным говорить об истинности или ложности предиката. Для нашего примера первое означивание дает ложное значение предиката, а второе – истинное. Иногда для утверждения об истинности или ложности предиката можно обойтись и без означивания. Например, если областью определения х являются целые положительные числа, то предикат «х больше ?5» будет тождественно истинен.

В исчислении предикатов используются те же операции, что и в исчислении высказываний. С их помощью образуются предикатные формулы. Будем обозначать предикаты большими латинскими буквами. Примерами предикатных формул могут служить Р(х,у)&Q(a,b) или P(?)P(z,l).

В исчислении предикатов используются два квантора: квантор общности и квантор существования. Первый обозначается как , а запись xP(x) эквивалентна утверждению «Для всех х из области его определения имеет место Р(х)». Второй квантор обозначается как , а запись хР(х) эквивалентна утверждению «Найдется по крайней мере один х* в области определения х, такой, что истинен Р(х*)». Переменные, находящиеся в сфере действия кванторов, называются связанными, остальные переменные – свободными.

Вспомним И.А. Крылова: «А вы, друзья, как ни садитесь, все ж в музыканты не годитесь!». Обозначим через Р(х,у) предикат, который связывает между собой способ рассаживания участников квартета и качество исполняемой ими музыки. Предикат Р(х,у) становится истинным лишь тогда, когда найдено такое взаимное расположение зверей в квартете, что качество музыки позволяет назвать исполнителей музыкантами. При этих условиях цитате из басни «Квартет» соответствует формула xP(x,у).

А вот Ф. Тютчев: «Бывают роковые дни лютейшего телесного недуга и страшных нравственных тревог…». Если Q(u,v) есть предикат, в котором переменная u определена на множестве дней, а переменная v на области настроений, связанных с «телесным недугом» и «страшными нравственными тревогами», то в исчислении предикатов началу стихотворения Тютчева будет соответствовать формула uQ(u,v).

Отметим, что имеют место следующие соотношения:



Справедливость их вытекает из смысла кванторов. Они позволяют любую формулу в исчислении предикатов представить в виде предваренной нормальной формы (ПНФ). В ней сначала выписываются все кванторы, а затем предикатные выражения. Например, формула



записана в ПНФ.

Введение кванторов и , а также их отрицаний наводит на мысль о связи исчисления предикатов и силлогистики Аристотеля. Вспомним еще раз смысл кванторов, использованных в силлогистике: Asp – «Всякое s есть р»; Esp – «Ни одно s не есть р», Isp – «Некоторые s есть р» и Osp – «Некоторые s не есть р». Представляется вполне справедливым заменить эти выражения силлогистики следующими четырьмя формулами исчисления предикатов:



На первый взгляд такая замена вполне законна. Но для того, чтобы убедиться в этом, необходимо показать, что в исчислении предикатов могут быть выведены все модусы силлогистики Аристотеля.

Система аксиом и правила вывода в исчислении предикатов могут быть заданы следующим образом. В качестве системы аксиом берется любая известная система аксиом исчисления высказываний и к ней добавляются специфические для исчисления предикатов аксиомы, например, такие:



Смысл их очевиден. Первая аксиома говорит о том, что если Р(х) истинен для любых х, то и для некоторого у из того же универсума истинность предиката должна сохраняться. Вторая аксиома говорит о том, что если найдется такое у, что Р(у) будет истинным, то верно, что существует х, для которого Р(х) истинно.

К правилам вывода, используемым в исчислении высказываний, в исчислении предикатов добавляются еще три правила.

1. Пусть F1 и F2 – две формулы исчисления предикатов. И пусть в F1 переменная х не входит, а в F2 входит в качестве свободной переменной. Пусть, наконец, формула F1F2 является выводимой. Тогда выводима и формула F1xF2.

2. Если х содержится в качестве свободной переменной в F1 и не содержится в таком виде в F2 и если F1F2 – выводимая формула, то xF1F2 также является выводимой.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература