Среди всех этих отношений едва ли не главнейшую роль для познания окружающего мира играют каузальные отношения
, отражающие в наиболее общей форме связи причин и следствий. Подробный разговор о каузальных связях мы отложим до конца этой главы. А пока поговорим лишь о том их виде, внимание к которому привлекли исследования английского логика середины XIX века Джона Стюарта Милля. Он поставил перед собой задачу нахождения связей между фактами и явлениями на основе анализа их совместного появления или непоявления в последовательности экспериментов. При этом он принял меры к тому, чтобы не повторять знаменитой ошибки при установлении причинно-следственных связей, которая вошла в историю науки под названием Post hoc ergo propter hoc, т.е. «После этого, значит вследствие этого». А ошибки такого типа не только встречались и встречаются в бытовых человеческих рассуждениях до сих пор, но иногда подобные выводы делаются сознательно, например, для создания неожиданных поэтических образов. Вот как превосходно использовал этот прием В. Луговской: «Речные девки в речках мочут косы, и над Русью от этого подъемлется туман».Принципы установления причинно-следственных отношений, которые предложил Милль, основываются на идеях выделения сходства и различия в наблюдаемых ситуациях внешнего мира.
Способность улавливать сходство и выделять различия – фундаментальная способность, по-видимому, всех живых существ. Опираясь на эту способность, Милль сформулировал свои принципы индукции.
Первым из них является Принцип единственного различия
. В формулировке, которая дана в известном учебнике логики В. Минто, он звучит следующим образом: «Если после введения какого-либо фактора появляется, или после удаления его исчезает, известное явление, причем мы не вводим и не удаляем никакого другого обстоятельства, которое могло бы иметь в данном случае влияние, и не производим никакого изменения среди первоначальных условий явления, то указанный фактор и составляет причину явления».Схематически этот принцип можно описать в виде следующей схемы:
Здесь знак трактуется лишь как появление d
при наличии а, b и c, а означает, что d не появляется. Повторение ситуаций n раз необходимо для того, чтобы убедиться в устойчивости всей ситуации в целом, для исключения случая, когда d появляется случайным образом, не будучи никак связанным с а. Если n, с точки зрения экспериментатора, достаточно для уверенного вывода, то, используя Принцип единственного различия, можно утверждать, что а является причиной, a d следствием, т.е. что между a и d имеет место причинно-следственное отношение. В дальнейшем будем называть реализации a,b,cd положительными примерами для d, а реализации b,c d – отрицательными примерами для d или контрпримерами.Второй основополагающий принцип индуктивного рассуждения Милля носит название Принципа единственного сходства
. В формулировке того же В. Минто он звучит следующим образом: «Если все обстоятельства явления, кроме одного, могут отсутствовать, не уничтожая этим явления, то это одно обстоятельство находится в отношении причинной связи с явлением при условии, что приняты были все меры к тому, чтобы никаких других обстоятельств, кроме принятых во внимание, налицо не оказалось».Схематическое представление этого принципа Милля выглядит следующим образом:
В этой схеме все примеры являются положительными. Из нее по Принципу единственного сходства вытекает, что a
и d связаны причинно-следственным отношением.Еще один принцип Милля – Принцип единственного остатка
. Он формулируется В. Минто следующим образом: «Если вычесть из какого-либо явления ту часть его, которая согласно прежним исследованиям оказывается следствием известных причин, присутствующих в явлении причин, то остаток явления есть следствие остальных причин».Принцип единственного остатка можно проиллюстрировать следующей схемой:
Следовательно, a
и d связаны причинно-следственным отношением, а b и с являются возможными причинами е. Для дальнейшего уточнения зависимости надо посмотреть, приводит ли исключение b к появлению e. Если приводит, то отношением «причина – следствие» связаны между собой с и е. В противном случае это отношение имеется между b и е.Отметим ряд особенностей схем Милля. Прежде всего, они справедливы лишь при условии, что в описании ситуации имеется полное множество наблюдаемых фактов или явлений. Например, в последнем случае может оказаться, что и исключение b
, и исключение с не влияют на появление е. Тогда можно предположить, что для появления е необходимо либо одновременное наличие b и с, либо е вызывается чем-то, не вошедшим в описание ситуации.