Читаем Моделирование рассуждений. Опыт анализа мыслительных актов полностью

Пусть, например, мы снова имеем классификацию, которая соответствует ситуациям, показанным на рис. 21. Но контрольный пример поступает в систему с указанием, что он относится к группе отрицательных примеров. А система в соответствии с ранее построенной классификацией относит его к положительному классу. В таком случае необходимо внести коррективы в классификацию, полученную ранее, выработать новую классификацию с учетом нового множества отрицательных примеров.

Вывод из этого только один. Поскольку множества положительных и отрицательных примеров не охватывают всех возможных случаев, то h и h’, построенные по методам Милля, даже в тех случаях, когда h=h’ не могут быть абсолютно точными. Эти утверждения могут быть приняты лишь с некоторой оценкой истинности Q(h) (соответственно Q(h’)). Но прежде чем описать, как эти оценки вычисляются, рассмотрим еще один метод правдоподобных рассуждений.

Рассуждения по аналогии

Начнем с задачи. Посмотрим на первую строку, показанную на рис. 23. В этой строке представлено преобразование F, с помощью которого пара слов, стоящая слева от стрелки, преобразуется в слово, стоящее от нее справа. Можно ли угадать, во что превратится пара слов, стоящих во второй строке на этом рисунке, если считать, что преобразование F’ максимально похоже на преобразование F? Для ответа на этот вопрос надо сначала понять, какова суть F. После недолгого размышления можно прийти к выводу, что слово, получаемое в результате преобразования, устроено следующим образом: первая его половина совпадает с первой половиной первого слова в исходной паре, а вторая его половина получается из первой половины второго слова в исходной паре, если в ней сделать перестановку букв. Если мы верим, что F именно таково (еще раз обратим внимание на этот постулат веры), то можно попытаться придать F’ тот же смысл. Тогда вместо знака вопроса в правой части второй строки можно написать результат преобразования. Им будет слово «плен». Если считать, что F’’ – преобразование, аналогичное F и F’, то вполне законным будет получение правой части по паре левых и в третьей строке на этом рисунке.


Рис. 23.



Какой смысл мы вложили в слово «аналогичное», когда говорили о преобразованиях? По крайней мере, двоякий. Во-первых, мы предположили, что элементы, из которых состоят слова и рисунки, как-то соответствуют друг другу. Например, елочки и фигурки из третьей строки ассоциируются у нас с буквами, из которых состоят слова, а буквы важны не сами по себе, а по тому месту, которое они занимают в словах. Во-вторых, мы предполагаем, что сохраняется суть преобразования, хотя элементы, с которыми преобразование оперирует, могут быть другими.

Эти соображения помогают уловить расплывчатый смысл, вкладываемый людьми в понятие аналогии. На рис. 24 показано три преобразования для треугольника Т. Преобразование можно назвать обобщением. При переходе от треугольника к многоугольнику наследуются только те геометрические свойства, которые верны для любых многоугольников. Сам треугольник по отношению к множеству многоугольников представляет некоторую конкретизацию. На рис. 24 преобразованием конкретизации служит , переводящее произвольный треугольник в его частный вид – прямоугольный треугольник. А вот преобразование можно назвать преобразованием по аналогии. Треугольная пирамида сохраняет многие свойства треугольника, но является не плоской, а объемной фигурой.


Рис. 24.



Первая попытка формализовать понятие рассуждения по аналогии была предпринята Лейбницем. В своем сочинении «Фрагменты логики» он ввел понятие пропорции для отношения аналогии. Пропорция Лейбница формулируется следующим образом: «Вещь А так относится к вещи В, как вещь А’ к вещи В’». Обычно пропорцию Лейбница представляют в виде диаграммы:



Для иллюстрации того, как может быть использована диаграмма Лейбница, рассмотрим семантическое пространство Осгуда. Это пространство, которое американский психолог Чарльз Осгуд строил экспериментально, проводя опыты с людьми, должно было, по его мнению, характеризовать организацию размещения информации в памяти человека. Мы не будем здесь останавливаться на способе его построения. В комментарии к данному разделу имеется некоторая информация по этому вопросу, а в библиографии заинтересовавшиеся читатели могут найти нужные работы. Скажем только, что упрощенное пространство Осгуда является обычным трехмерным евклидовым пространством. Близость по метрике этого пространства характеризует семантическую близость понятий, фактов и утверждений, а рассуждения, проведенные в пространстве относительно группы элементов, могут проецироваться по аналогии на группы, состоящие из семантически близких элементов.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература