Читаем Models of the Mind полностью

Одним из примеров такого более инклюзивного подхода является сверхдетальное моделирование, созданное в рамках проекта Blue Brain Project, о котором говорилось в главе 2. Эти исследователи извлекли бесчисленное количество деталей о нейронах и синапсах с помощью серии кропотливых экспериментов. Затем они собрали все эти данные в сложную вычислительную модель небольшого участка мозга. Такой подход предполагает, что каждая деталь ценна и что мозг не понять, если их отбросить. Это искреннее принятие всех нюансов биологии в надежде, что, собрав все воедино, мы получим более полное представление о том, как работает мозг. Однако проблема здесь заключается в масштабах. При восходящем подходе к восстановлению мозга можно работать только с одним нейроном за раз, а значит, до создания полной модели еще далеко.

Семантическая архитектура указателей (Semantic Pointer Architecture Unified Network), более известная как SPAUN, подходит к делу с совершенно другой стороны. Вместо того чтобы фиксировать все тонкости нейробиологии, SPAUN, разработанная командой под руководством Криса Элиасмита в Университете Ватерлоо (Онтарио, Канада), направлена на создание работающей модели мозга. Это означает, что мы получаем те же сенсорные входы и имеем те же двигательные выходы. В частности, SPAUN получает на вход изображения и управляет симулированной рукой для создания выходных данных. Между этими входами и выходами находится сложная сеть из 2,5 миллионов простых модельных нейронов, расположенных таким образом, чтобы в общих чертах имитировать структуру всего мозга. Благодаря этим нейронным связям SPAUN может выполнять семь различных когнитивных и моторных задач, таких как рисование цифр, запоминание списков объектов и составление простых узоров. Таким образом, SPAUN отказывается от элегантности в пользу функциональности. Конечно, человеческий мозг содержит в десятки тысяч раз больше нейронов и может выполнять гораздо больше, чем семь задач. Смогут ли принципы утилитарности и масштабирования, благодаря которым SPAUN достигла своей цели, довести ее до полноценной модели мозга - или нужно будет добавить еще больше нюансов работы нейронов - пока неизвестно.

Истинные ГУТ стремятся к конденсированию. Они переплавляют разнообразную информацию в компактную и легко усваиваемую форму. Благодаря этому GUT кажутся удовлетворительными, потому что они дают ощущение, что работу мозга можно полностью охватить одним взглядом. Такие модели, как SPAUN и симуляция Blue Brain Project, однако, являются экспансивными. Они привлекают множество источников данных и используют их для построения сложной структуры. Таким образом, они жертвуют интерпретируемостью ради точности. Их цель - объяснить все, включив в себя все, что можно объяснить.

Хотя, как и в случае со всеми другими моделями, даже эти, более обширные, все равно не являются идеальными копиями. Создателям этих моделей все равно приходится выбирать, что включать, а что не включать, что объяснять, а что игнорировать. Если стремиться к чему-то сродни ГУТ, всегда хочется найти простейший набор принципов, способный объяснить наибольший набор фактов. С таким плотным и запутанным объектом, как мозг, этот простой набор может оказаться довольно сложным. Заранее знать, какой уровень детализации и какой масштаб потребуется для отражения соответствующих особенностей работы мозга, невозможно. Прогресс в этом вопросе возможен только благодаря построению и тестированию моделей.

В целом, нейронаука поддерживает очень плодотворные отношения с более "тяжелыми", количественными науками. Она получила множество подарков от таких наук, как физика, математика и инженерия. Эти аналогии, методы и инструменты изменили представление обо всем - от нейронов до поведения. А изучение мозга дало ответную отдачу, став источником вдохновения для искусственного интеллекта и полигоном для испытания математических методов.

Но нейронаука - это не физика. Она не должна играть роль младшего брата или сестры, пытаясь в точности следовать по стопам этой более старой дисциплины. Принципы, которыми руководствуется физика, и стратегии, которые привели ее к успеху, не всегда будут работать, если применить их к биологии. Поэтому вдохновение следует воспринимать с осторожностью. При создании моделей разума эстетика математики не является единственным путеводным маяком. Скорее, это влияние должно всегда взвешиваться с уникальными реалиями мозга. При правильном балансе хитросплетения биологии можно свести к математике таким образом, чтобы получить истинное понимание и не подвергнуться чрезмерному влиянию других областей. Таким образом, изучение мозга прокладывает свой собственный путь к использованию математики для понимания мира природы.

 

Математическое приложение

 

Глава 2: Как нейроны получают спайки

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия