Электроды ЭЭГ, прикрепленные с помощью наклеек и скотча к коже головы, отслеживают электрическую активность, производимую расположенным под ними мозгом. Каждый электрод дает одно измерение - сложную комбинацию активности многих и многих нейронов одновременно. Это сигнал, который изменяется во времени, как на сейсмографе. Когда пациенты бодрствуют, сигнал представляет собой неровную и волнистую линию: он беспорядочно движется вверх и вниз, но без выраженного ритма. Когда пациенты спят (особенно в глубоком сне без сновидений), на ЭЭГ возникают волны: большие движения вверх и вниз, продолжающиеся в течение секунды или более. Когда происходит интересующее нас событие - припадок, - движения становятся еще более резкими. Сигнал совершает большие, быстрые движения вверх и вниз, три-четыре раза в секунду, как ребенок, бешено рисующий мелком.
Что делают нейроны, чтобы создать такие сильные сигналы во время припадка? Они работают вместе. Подобно хорошо обученному военному строю, они маршируют в такт: срабатывают в унисон, затем замолкают и снова срабатывают. В результате возникает повторяющийся, синхронный всплеск активности, который заставляет сигнал ЭЭГ подниматься и опускаться снова и снова. Таким образом, припадок является противоположностью случайности - это идеальный порядок и предсказуемость.
Те же нейроны, которые вызывают припадок, также производят медленные волны сна и нормальную шумную активность, необходимую для повседневного познания. Как одна и та же цепь может демонстрировать такие разные модели поведения? И как она переключается между ними?
В конце 1990-х годов французский нейробиолог-вычислитель Николя Брюнель задался целью понять могут вести себя различные схемы. В частности, основываясь на работах ван Вресвейка и Сомполинского, он хотел изучить, как ведут себя модели, состоящие из возбуждающих и тормозных нейронов. Для этого Брунель исследовал пространство параметров этих моделей.
Параметры - это ручки, которые можно поворачивать в модели. Они представляют собой значения, которые определяют конкретные характеристики, например количество нейронов в сети или количество входов для каждого из них. Как и обычное пространство, пространство параметров можно исследовать в разных направлениях, но здесь каждое направление соответствует отдельному параметру. Брюнель решил исследовать два параметра: во-первых, сколько внешних сигналов получает сеть (т.е. сигналов из других областей мозга) и, во-вторых, насколько сильны тормозные связи в сети по сравнению с возбуждающими. Немного изменяя каждый из этих параметров и перебирая уравнения, Брюнель мог проверить, как поведение сети зависит от этих значений.
Проделав это для множества различных значений параметров, вы получите карту поведения модели. Широта и долгота на этой карте (см. рис. 13) соответствуют двум параметрам, которые варьировал Брюнель, соответственно. Для сети, расположенной в середине карты, торможение точно равно возбуждению, а вход в сеть имеет среднюю силу. В движении влево по карте возбуждение становится сильнее торможения; движется вправо и наоборот. Двигаясь вверх, вход в сеть становится сильнее, вниз - слабее. В таком виде сеть, которую изучали ван Вресвейк и Сомполински, - с тормозными связями, немного более сильными, чем возбуждающие, - находится чуть правее середины.