Читаем Models of the Mind полностью

Когда дело доходит до вопросов самосогласованности в сетях, физики знают, что делать.Как мы видели в предыдущей главе, в физике полно ситуаций, когда самосогласованность важна: например, газы, состоящие из большого количества простых частиц, где каждая частица подвержена влиянию всех окружающих ее частиц иответвлияет на них.Поэтому были разработаны методы, облегчающие работу с математикой этих взаимодействий.

В 1980-х годах израильский физик Хаим Сомполинский использовал эти методы, чтобы понять, как ведут себя материалы при различных температурах. Но в конце концов его интересы обратились к нейронам. В 1996 году Сомполинский и его коллега, физик, ставший нейробиологом, Карл ван Вресвейк применили физический подход к вопросу о балансе в мозге. Подражая математике, используемой для понимания взаимодействующих частиц, они записали несколько простых уравнений, которые представляли очень большую популяцию взаимодействующих возбуждающих и тормозящих клеток. Эта популяция также получала внешние сигналы, представляющие собой связи, поступающие из других областей мозга.

С помощью простых уравнений ван Вресвейк и Сомполински смогли математически определить, какое поведение они хотели бы видеть в модели. Например, клетки должны быть способны поддерживать активность, но не слишком активную (например, не должны безостановочно стрелять). Кроме того, они должны реагировать на увеличение внешнего сигнала повышением средней скорости стрельбы. И, конечно же, реакция не должна быть шумной.

Введя эти требования, ван Вресвейк и Сомполински стали перебирать уравнения. Они обнаружили, что для создания полноценной сети, которая будет продолжатьнерегулярнострелятьс разумной скоростью, необходимо соблюсти некоторые условия. Например, тормозные клетки должны оказывать на возбуждающие клетки более сильное влияние, чем возбуждающие клетки друг на друга. Благодаря тому, что возбуждающие клетки получают чуть больше торможения, чем возбуждения, активность сети находится под контролем. Также важно, чтобы связи между нейронами были случайными и редкими - каждая клетка должна получать входные сигналы, скажем, от пяти или десяти процентов других клеток. Это гарантирует, что два нейрона не будут зациклены на одной и той же модели поведения.

Ни одно из требований, которые обнаружили ван Вресвейк и Сомполински, не было неразумным для мозга. И когда пара провела симуляцию сети, которая отвечала всем этим требованиям, возник необходимый баланс между возбуждением и торможением, а симулированные нейроны выглядели такими же шумными, как и реальные. Интуиция Шадлена и Ньюсома о том, как один нейрон может поддерживать шумный режим работы, действительно подтвердилась в сети взаимодействующих нейронов.

Ван Вресвейк и Сомполински не только показали, что в сети можно сбалансировать возбуждение и торможение, но и обнаружили возможную пользу от этого: нейроны в плотно сбалансированной сети быстро реагируют на входные сигналы. Когда сеть сбалансирована, она похожа на водителя, у которого каждая нога одинаково нажата на газ и тормоз. Однако этот баланс нарушается при изменении количества внешнего сигнала. Поскольку внешние сигналы являются возбуждающими - а они направлены на возбуждающие клетки сети в большей степени, чем на тормозящие, - увеличение их количества подобно увеличению веса на педали газа. После этого автомобиль разгоняется почти так же быстро, как и поступил сигнал. Однакопосле первоначальной реакциисеть восстанавливает равновесие. Взрыв возбуждения в сети заставляет тормозные нейроны срабатывать сильнее, и - подобно добавлению дополнительного груза на тормоз - сеть приходит в новое равновесие, готовая снова реагировать. Такая способность быстро реагировать на изменение входного сигнала может помочь мозгу точно идти в ногу с меняющимся миром.

Знание того, что математика работает, обнадеживает, но настоящая проверка теории происходит на реальных нейронах. В работе Ван Вресвейка и Сомполинского содержится множество предсказаний, которые нейроученые могут проверить, что и сделали Майкл Вер и Энтони Задор из лаборатории Колд-Спринг-Харбор в 2003 году. Пара записывала нейроны в слуховой коре крыс, которая отвечает за обработку звука, в то время как животным проигрывались различные звуки. Обычно, когда неврологи опускают электрод в мозг, они пытаются уловить выход нейронов - то есть их всплески. Но эти исследователи использовали другую технику, чтобы подслушать, какой вход получает нейрон - в частности, чтобы увидеть, уравновешивают ли возбуждающие и тормозящие сигналы друг друга.

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия