Они увидели, что сразу после включения звука в клетку поступает мощный поток возбуждения. За ним почти сразу же последовал такой же приток торможения - тормоз, который следует за газом. Поэтому увеличение входного сигнала в этой реальной сети показало именно то поведение, которое ожидалось от модели. Даже при использовании более громких звуков, которые вызывали большее возбуждение, количество торможения, которое следовало за ним, всегда соответствовало ему. Казалось, что в мозге возникает баланс, как и в модели.
Чтобы исследовать еще одно предсказание модели, ученым пришлось проявить некоторую изобретательность. Ван Вресвейк и Сомполинскипоказали, что для создания сбалансированной сети сила связей между нейронами должна зависеть от общего количества связей: при большем количестве связей каждая связь может быть слабее. Жереми Барраль и Алекс Рейес из Нью-Йоркского университета хотели найти способ изменить количество связей в сети, чтобы проверить эту гипотезу.
Внутри мозга сложно контролировать рост нейронов. Поэтому в 2016 году они решили выращивать их в чашке Петри. Это экспериментальная установка, которая по своей простоте, управляемости и гибкости почти как живая версия компьютерной симуляции. Чтобы контролировать количество связей, они просто поместили в чашку разное количество нейронов; в чашках с большим количеством нейронов образовывалось больше связей. Затем они наблюдали за активностью нейронов и проверяли силу их связей. Все популяции (содержащие как возбуждающие, так и тормозящие клетки) шумели, как и положено сбалансированной сети. Но сила связей резко различалась. В блюде, где каждый нейрон имел всего около 50 связей, связи были в три раза сильнее, чем в блюде с 500 связями. На самом деле, если рассматривать все популяции, средняя сила связи была примерно равна единице, деленной на квадратный корень из числа связей - именно то, что предсказывала теория ван Вресвейка и Сомполинского.
По мере того, как искались все новые и новые доказательства, находилось все больше подтверждений тому, что мозг находится в сбалансированном состоянии. Но не все эксперименты проходили так, как предсказывала теория; не всегда наблюдался жесткий баланс между возбуждением и торможением. Есть все основания полагать, что определенныеобласти мозга , занятые выполнением определенных задач, могут с большей вероятностью демонстрировать сбалансированное поведение. Например, слуховая кора должна реагировать на быстрые изменения частоты звука, чтобы обрабатывать поступающую информацию. Поэтому быстрая реакция хорошо сбалансированных нейронов - подходящий вариант. Для других областей, где не требуется такая скорость, может быть найдено другое решение.
Прелесть баланса в том, что он берет вездесущего обитателя мозга - торможение - и заставляет его работать над решением столь же вездесущей загадки - шума. И все это без какой-либо опоры на магию: то есть без скрытого источника случайности. Шум возникает даже тогда, когда нейроны реагируют так, как и должны.
Этот контр-интуитивный факт, что хорошее поведение может привести к бедламу, очень важен. И он уже был замечен ранее. Ван Вресвейк и Сомполински ссылаются на эту историю в первом слове названия своей работы: "Хаос в нейронных сетях со сбалансированной возбуждающей и тормозной активностью".
* * *
В 1930-х годах хаоса не существовало: когда нейробиологи впервые осознали, насколько шумны нейроны, математическая теория, позволяющая понять их поведение, еще не была открыта. А когда она появилась, все произошло, казалось бы, случайно.
Кафедра метеорологии в Массачусетском технологическом институте была основана в 1941 году, как раз к приезду Эдварда Лоренца. Лоренц, родившийся в 1917 году в хорошем районе Коннектикута в семье инженера и учительницы, с ранних лет проявлял интерес к числам, картам и планетам. Степень бакалавра по математике он собирался продолжить, но, как и в случае со многими учеными его времени, вмешалась война. В 1942 году Лоренц получил задание предсказывать погоду для военно-воздушного корпуса США. Чтобы научиться этому, он прошел ускоренный курс метеорологии в Массачусетском технологическом институте. После окончания службы в армии он остался заниматься метеорологией и остался в Массачусетском технологическом институте: сначала в качестве аспиранта, затем научного сотрудника и, наконец, профессора.
Если вы когда-нибудь пытались спланировать пикник, то знаете, что предсказание погоды далеко от совершенства. Академические метеорологи, занимающиеся крупномасштабной физикой планеты, вряд ли считают ежедневное прогнозирование своей целью. Но Лоренц не переставал интересоваться этим вопросом и тем, как новая технология - компьютер - может помочь.
Уравнения, описывающие погоду, многочисленны и сложны. Перебирать их вручную, чтобы понять, как погода сейчас приведет к погоде потом, - огромная, почти невыполнимая задача (к тому времени, когда вы ее закончите, предсказываемая вами погода, скорее всего, уже пройдет). Но компьютер, вероятно, может сделать это гораздо быстрее.