Например, рассмотрим популяцию из двух нейронов, активность которых мы хотели бы описать одним числом. Допустим, мы регистрировали активность этих двух нейронов во время различных движений, поэтому для каждого движения у нас есть пара чисел, представляющих количество спайков от каждого из них. Если мы построим график этих пар, используя ось x для одного нейрона и ось y для другого, мы увидим, что данные падают более или менее вдоль линии. Эта линия и будет нашим новым измерением. Теперь, вместо того чтобы описывать активность во время каждого движения как пару чисел, мы можем описать ее как одно число, которое относится к тому, где она падает на этой линии.
Если данные не ложатся вдоль линии - то есть активность двух нейронов совсем не похожа, - то это не очень хорошо работает. В этом случае мы бы сказали, что эта двумерная нейронная популяция действительно использует все свои два измерения и поэтому не может быть уменьшена. Но, как уже говорилось ранее, существует множество причин, по которым в среднем некоторая нейронная активность является избыточной и поэтому сокращение размерности возможно.
Редукция размерности успешно применяется ко всем видам нейронных данных на протяжении многих лет. Сам метод PCA был применен еще в 1978 году, когда с его помощью было показано, что активность восьми нейронов, отвечающих за кодирование положения колена, может быть хорошо представлена всего одним или двумя измерениями. А в последнее десятилетие использование PCA в исследованиях моторной коры только расширяется. Это связано с тем, что снижение размерности помогает ученым-мотористам увидеть то, что иначе было бы скрыто. Если свести подъемы и спады активности более сотни нейронов в одну линию, то их закономерности станут видны невооруженным глазом. Взгляд на эволюцию активности популяции как на форму, прорисованную в трех измерениях, позволяет ученым использовать свои интуитивные представления о пространстве , чтобы понять, что делают нейроны. Таким образом, наблюдение за этими траекториями может зародить новые истории о том, как работает двигательная система.
Например, в начале 2010-х годов в лаборатории Кришны Шеноя в Стэнфордском университете изучали, как моторная кора готовится к движениям. Для этого обезьян обучали выполнять стандартные движения руками, но вводили задержку между моментом, когда давалось указание на движение, и моментом, когда животное должно было начать движение. Это позволило записывать данные из моторной коры, пока она готовилась к движению.
Долгое время считалось, что при подготовке к движениям нейроны моторной коры головного мозга будут работать по схеме, аналогичной той, что они работают во время движения, только с меньшей общей частотой. То есть, по сути, они говорят то же самое, но тише. В пространстве нейронной активности это означало бы, что подготовительная активность идет в том же направлении, что и двигательная активность, но просто не так далеко. Однако, построив низкоразмерную версию нейронной активности, когда животное планировало, а затем выполняло движение, исследователи обнаружили, что это не так. Активность перед движением не была просто сдержанной версией активности во время движения; напротив, она занимала совершенно другую область пространства активности.
Этот вывод, хотя и удивительный, согласуется с более современным взглядом на моторную кору. Этот новый взгляд делает акцент на том, что моторная кора является динамической системой - нейроны в ней взаимодействуют таким образом, что способны создавать сложные паттерны активности с течением времени. Благодаря этим взаимодействиям между нейронами моторная кора способна принимать короткие, простые сигналы и производить ответ сложные и длинные сигналы. Это означает, что другая область мозга может решить, где должна быть рука, послать эту информацию в моторную кору, а моторная кора выработает полную траекторию нейронной активности, необходимую для того, чтобы рука оказалась там.