Читаем Models of the Mind полностью

По некоторым оценкам, эта область сбилась с пути, потому что слепо следовала по пути, проложенному другими учеными: изучение сенсорных систем, которое так вдохновляло Георгопулоса, было плохой моделью для понимания движения. Споры о том, "что кодирует моторная кора?", остались неразрешенными не потому, что вопрос сложный, а потому, что он изначально был задан неправильно. Двигательной системе не нужно отслеживать параметры движения, ей нужно просто производить движения.

Как было показано в предыдущей главе, если ученые видят структуру в нейронной активности, это еще не значит, что мозг ее использует. Распространенная аналогия сравнивает моторную кору с двигателем автомобиля. Двигатель, безусловно, отвечает за движение автомобиля. И если измерить активность различных его частей - поршня, ремней двигателя и т. д. Это вполне вероятно, что некоторые из этих величин при определенных условиях довольно сильно коррелировали бы с силой, создаваемой автомобилем, или с направлением, в котором он поворачивает. Но можно ли сказать, что двигатель работает, "кодируя" эти переменные? Или это скорее условность, привнесенная в моторную кору учеными, которые сами понимают движение через концепции силы, механики и физики? Как написал в 2009 году нейробиолог Джон Каласка: "Суставной момент - это ньютоновский механический параметр, определяющий вращательную силу, необходимую для создания определенного движения в суставе... Маловероятно, что нейрон [моторной коры] знает, что такое Ньютон-метр или как рассчитать, сколько Ньютон-метров необходимо для создания определенного движения".

* * *

То, что вопрос "Что кодирует моторная кора?" был неправильным для понимания моторной коры, не означает, что ответ на него не имеет ценности. Действительно, попытка декодировать информацию из моторной коры может быть весьма полезной - но не для того, чтобы понять моторную систему, а для того, чтобы обойти ее вовсе.

Когда в небольшой комнате недалеко от Провиденса, штат Род-Айленд, 55-летняя женщина по имени Кэти Хатчинсон поднесла чашку с кофе ко рту и сделала глоток, она сделала это впервые за более чем 15 лет. Это также был первый случай, когда подобный подвиг совершил человек с тетраплегией. Хатчинсон стала парализованной от шеи вниз, когда ей было 39 лет, после инсульта, случившегося во время садовых работ в весенний день 1996 года. Согласно интервьюWired, она узнала о BrainGate - исследовательской группе при Университете Брауна, которая изучает возможности использования интерфейсов мозг-компьютер для восстановления подвижности пациентов - от друга, работавшего в больнице. Хатчинсон приняла участие в их клинических испытаниях.

В рамках своего исследования ученые из BrainGate имплантировали в мозг Кэти устройство - квадратный кусок металла размером меньше средней пуговицы рубашки, состоящий из 96 электродов, расположенных в области левой моторной коры головного мозга, контролирующей руки. Активность нейронов, регистрируемая с помощью этих электродов, по проводу выводится из ее головы и поступает в компьютерную систему. Эта машина соединяется с роботизированной рукой, установленной на подставке справа от Кэти. Сама рука выглядит инопланетно - пузатая, неуклюжая и блестящая, синяя, - но кисть на ее конце более узнаваема, с тонкими детализированными суставами матового серебристого цвета. Когда Кэти управляет ею, движения не отличаются плавностью. Рука замирает и движется назад, прежде чем в конце концов поднести кофе к ней. Но в конце концов она выполняет свою работу - и женщина, потерявшая способность двигать своими собственными конечностями, обрела способность двигать этой.

Даже этот простой и несовершенный контроль не пришел сразу. Чтобы машина научилась слушать моторную кору головного мозга Кэти, ее нужно было обучить. BrainGate добился этого, заставив Кэти представить, как она двигает рукой в разных направлениях. Затем паттерны нейронной активности можно соотнести с командами двигать рукой в разных направлениях. Таким образом, управление этим интерфейсом мозг-компьютер зависит от наличия настройки направления в моторной коре. Иными словами, если бы не было возможности считывать направление движения - и другие намерения, такие как схватить или отпустить - с популяции клеток моторной коры, интерфейсы мозг-компьютер не работали бы.

Эти устройства также зависят от множества тяжелых математических механизмов, которые работают за кулисами. В BrainGate используется алгоритм, который комбинирует данные о нейронной активности с информацией о направлении движения в прошлом. Кроме того, некоторые из тонких движений руки и запястья робота заранее запрограммированы в устройстве, так что пользователь может запустить полную, подробную двигательную последовательность, представив себе простую команду. Это практический выход из ситуации, когда сложно считать подробные двигательные команды из активности группы нейронов.

Перейти на страницу:

Похожие книги

Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия