Итак, что мы знаем о том, как работают анестетики? С тех пор как их открыли, большой загадкой оставалось то, как все представители такой разнообразной группы химических веществ могут приводить к потере сознания. Другие лекарственные препараты работают, связываясь в организме с молекулами-рецепторами, обычно белками, таким образом, что лекарственное вещество и рецептор на молекулярном уровне подходят друг другу, как ключ к замку. Однако длинный список анестетиков включает в себя как крупные сложные молекулы, такие как барбитураты или стероиды, так и инертный газ ксенон, представляющий собой одиночные атомы. Как могут все они подходить к одному и тому же замку?
Долгое время факт поразительной корреляции выраженности наркотического эффекта анестетиков с их растворимостью в жирах притягивал большой интерес. Популярная «липидная теория» гласила, что вместо связывания со специфичными белковыми рецепторами анестетики физически разрушают жировые мембраны нервных клеток, приводя к их дисфункции.
Рис. 8.1. Вы засыпаете: потеря сознания под наркозом – это не столько щелчок выключателя света, сколько постепенное его убавление
Однако в 1980-х годах экспериментальные испытания показали, что анестетики могут связываться с белками в отсутствие клеточных мембран. С тех пор для многих анестетиков были обнаружены соответствующие белковые рецепторы. Пропофол, например, связывается с рецепторами на нервных клетках, которые обычно реагируют на химический посредник γ-аминомасляную кислоту (ГАМК). Существует предположение, что растворимость анестетиков в жироподобных веществах влияет на то, насколько легко они достигают рецепторов в жировой мембране.
Но это раскрывает лишь малую часть тайны. Мы до сих пор не знаем, как это связывание влияет на нервные клетки, и какие нейронные сети они задействуют.
Считается, что многие анестетики работают, препятствуя возбуждению нейронов, но в зависимости от того, какие нейроны блокируются, это может иметь разные последствия для функционирования мозга. Для определения того, на какие участки мозга влияют анестетики, используют методы визуализации работы мозга, такие как функциональная МРТ, которая отслеживает изменения кровообращения в разных областях мозга. Это помогло выявить несколько областей, которые дезактивирует большинство анестетиков. Но, к сожалению, в этот процесс вовлечено так много участков мозга, что трудно понять, воздействие на какие из них является основной причиной потери сознания.
Принимая во внимание теорию глобального рабочего пространства сознания (см. главу 2), возможно, это не удивительно. Эта теория утверждает, что входящая сенсорная информация сначала неосознанно обрабатывается в отдельных областях мозга. Наши переживания становятся осознанными, только если эти сигналы передаются в сеть нейронов, распространенных по всему мозгу, чья работа после этого синхронизируется.
Эта идея недавно получила поддержку в ходе регистрации электрической активности мозга с использованием датчиков электроэнцефалографа (ЭЭГ) на коже головы, в то время как испытуемым вводили анестезию. Исследование показало, что по мере угасания сознания утрачивалась синхронность работы различных областей коры: самого внешнего слоя мозга, важного для деятельности внимания, осознания, мышления и памяти.
Этот процесс также визуализировали с использованием сканирования фМРТ. Стивен Лаурейс, возглавляющий научную группу по изучению комы Льежского университета в Бельгии, посмотрел, что происходит во время пропофольной анестезии, когда пациенты проходят от бодрствования через легкую седацию до стадии, когда они оказываются не способны реагировать на команды. Он обнаружил, что в бессознательном состоянии в ответ на внешние раздражители возбуждались небольшие «островки» коры, но распространения активности в другие области мозга не происходило, в отличие от бодрствования или легкой седации.
Команда ученых под руководством Андреаса Энгеля из Университетской клиники Гамбург – Эппендорф изучает этот процесс еще подробнее, наблюдая за переходом в бессознательное состояние в замедлении. Обычно потеря сознания после инъекции пропофола занимает около десяти секунд. Энгель замедлил этот процесс до многих минут, начиная с малой дозы и затем увеличивая ее в семь этапов. На каждом этапе в запястье испытуемого посылали легкий удар электрическим током и снимали показания ЭЭГ.
Известно, что при входе в мозг сенсорные стимулы сначала активируют область, называемую первичной сенсорной корой. Затем включаются дальнейшие сети, в том числе лобные области, участвующие в управлении поведением, и височные зоны у основания мозга, которые играют важную роль в хранении памяти. Энгель обнаружил, что на самых глубоких уровнях наркоза первичная сенсорная кора была единственной областью, реагировавшей на удар током. Казалось, до глобального рабочего пространства стимулы не доходили.