Читаем Мозг. Как он устроен и что с ним делать полностью

Доли секунды прикосновение будет находиться в ведении иконической памяти. Ее еще называют перцептивной. Это своеобразный информационный след возбуждения в сенсорной системе осязания.

Что же дальше? Вот вы едете в лифте или идете из кафе. Вы прокручиваете этот момент в голове – ведь приятное было касание! И его (ее) рука словно вновь касается вас. Информация бегает по сетям вашего мозга какое-то время, пока вы не переключаетесь. Это кратковременная память.

Помните, мы говорили о нейронной модели стимула Соколова, когда обсуждали, как мы реагируем на стук в дверь?

Рабочий день закончился, и вдруг вы вновь вспоминаете то самое прикосновение. А потом на следующий день, собираясь на работу, вдруг еще раз… Потом на несколько дней или даже на неделю вы будто забываете про прикосновение. Но однажды вы вновь пересекаетесь с тем (той) же коллегой, просто взглядами. И в памяти вспыхивает, словно наяву, то же самое ощущение. В этот момент мы имеем дело уже с долговременной памятью.

Можно ли улучшить память?

На сегодняшней день остается нерешенной проблема развития (или улучшения, если хотите) памяти. Вы уже поняли, что она бывает краткосрочной и долгосрочной. Существует еще и среднесрочная – промежуточная между краткосрочной и долгосрочной. Мы не будем затрагивать великое множество самых разных классификаций, остановимся лишь еще на одном из видов. Есть такой вид памяти – обыденная. Именно ее мы задействуем в повседневной жизни. Это та самая память, которую мозг запускает, когда надо решить конкретную задачу.

Рис. 49. Схематическое изображение ключевых нейронов (чувствительный, двигательный) и органов (сифон и чернильный мешок) аплизии

К примеру, супруга пишет на листке список покупок, затем просит прочесть его и кладет в карман своему спутнику жизни. Он, как это часто бывает, по дороге из автомобиля список теряет. Приходит в супермаркет, гуляет по нему, гуляет и сначала покупает то, что вроде запомнил: «Были яйца, морковь, что-то еще… так, надо список достать». В какой-то момент он осознает, что потерял список. И начинает судорожно вспоминать его пункты, понимая, что получит выговор, если не купит того, что просила жена. И вот то, что он вспомнит из этого списка, и будет его обыденной памятью! Согласитесь, нам всем, вообще-то, полезно обладать хорошей обыденной памятью. Никто не хочет получать нагоняи из-за своей забывчивости. А теперь грустная новость: наука не знает ни одного безопасного способа улучшить эту злосчастную обыденную память. Почему?

Мы уже упоминали Нобелевского лауреата Эрика Кэндела. Он открыл клеточный механизм запоминания информации.

Кэндел выбрал в качестве объекта исследований аплизию – моллюска, которого еще называют морским зайцем. И сделал он это неспроста. Причин было две: крупные нервные элементы и относительно простое устройство нервной системы.

У аплизии аспекты памяти представляют собой простые рефлекторные дуги, состоящие из небольшого числа довольно крупных нервных клеток. Синапсы в них увидеть достаточно легко.

Для того чтобы в этом убедиться, достаточно взглянуть на рис. 49.

Во время эксперимента моллюску осторожно задевали сифон, вслед за этим моментально наносили сильный удар по хвосту. Для животного это несомненный стресс, и некоторое время оно реагирует на легкое прикосновение к сифону бурной защитной реакцией. Через небольшой промежуток времени (меньше часа) моллюск забывает. Это мы можем обозначить как кратковременную память (из нашей первой упомянутой классификации).

Но если подобную процедуру повторить несколько раз (семь, восемь и более), мы сформируем у моллюска стойкий рефлекс. Это вариант долговременной памяти.

Взгляните на рис. 50. Он позволит детальнее сориентироваться, что же происходит внутри клеток аплизии.

Рис. 50. Схема синапсов (контактов между нервными клетками) аплизии

На схеме мы видим модулирующий нейрон (получает информацию от хвоста), моторный (заставляет мышцы жабры, которая расположена рядом с чернильным мешком, работать и выбрасывать чернила) и сенсорный (или чувствительный, он получает сигнал от сифона). Для удобства мы пронумеруем синапсы.

Если в момент прикосновения к сифону модулирующий нейрон «молчит» (по хвосту не бьют), в синапсе 1 (между моторным и сенсорным) выбрасывается немного нейромедиатора. Этого количества не хватает, чтобы моторный нейрон возбуждался. Вообще, чтобы импульс прошел, нужно достаточно много медиатора (одной-двух молекул не хватит).

Однако удар по хвосту вызывает параллельный процесс – выброс нейромедиатора в синапсе 2 (между модулирующим и сенсорным). А это приводит к очень ощутимым изменениям в поведении синапса 1.

В окончании сенсорного нейрона синтезируется вещество цАМФ (циклический аденозинмонофосфат). Молекулы этого вещества активизирует регуляторный белок под названием протеинкиназа А.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
История Византийских императоров. От Константина Великого до Анастасия I
История Византийских императоров. От Константина Великого до Анастасия I

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Пятитомное сочинение А.М. Величко «История Византийских императоров» раскрывает события царствования всех монархических династий Священной Римской (Византийской) империи — от св. Константина Великого до падения Константинополя в 1453 г. Это первое комплексное исследование, в котором исторические события из политической жизни Византийского государства изображаются в их органической взаимосвязи с жизнью древней Церкви и личностью конкретных царей. В работе детально и обстоятельно изображены интереснейшие перипетии истории Византийской державы, в том числе в части межцерковных отношений Рима и Константинополя. Приводятся многочисленные события времён Вселенских Соборов, раскрываются роль и формы участия императоров в деятельности Кафолической Церкви. Сочинение снабжено портретами всех императоров Византийской империи, картами и широким справочным материалом.Для всех интересующихся историей Византии, Церкви, права и политики, а также студентов юридических и исторических факультетов.Настоящий том охватывает эпоху от Константина Великого до Анастасия I.÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Алексей Михайлович Величко

Научная литература