Читаем Мозг. Как он устроен и что с ним делать полностью

Что же происходит дальше. В клетке много разнообразных систем. Многие нужны для амплификации (усиления сигнала). Скажем, одна молекула может активировать несколько больших биохимических каскадов (последовательных наборов превращений). Так вот, протеинкиназа А и является такой волшебной молекулой. Она активирует (как бы переводит в рабочую форму) ряд других белков таким образом, что синапс 1 (в ответ на прикосновение к сифону) начинает вырабатывать больше медиатора. А это в свою очередь приводит к тому, что моторный нейрон возбуждается. Это и есть кратковременная память. Пока в окончании сенсорного нейрона (в районе синапса) много активной протеинкиназы А, передача к мышцам чернильного мешка осуществляется эффективно.

Из-за синтеза протеинкиназы А происходит функциональное изменение синапса (он чуть лучше проводит импульс, но структурно пока не меняется), но его мощность невелика.

Объем кратковременной памяти сильно ограничен: у человека это менее 10 элементов. Если воздействие не повторяется, то информация о нем сохраняется в памяти всего несколько минут. Вот почему мы вспоминали в главе про внимание формулу «5 ± 2».

Если прикосновение к сифону сопровождать ударом по хвосту много раз подряд, протеинкиназы А становится очень много. Ее молекулы проникают через поры (они используются для транспорта РНК) в ядро сенсорного нейрона. В ядре активируется особый белок – транскрипционный фактор CREB. Этот белок умеет включать гены и содействовать считыванию информации с молекулы ДНК. Запускается ряд генов, которые заставляют синапс разрастаться (увеличивать свою площадь). Это показано пунктиром на схеме.

В некоторых случаях у окончания сенсорного нейрона появляются дополнительные отростки. Таким образом происходит архитектурная перестройка клетки. С этого момента даже легкое прикосновение к сифону (совсем слабое возбуждение сенсорного нейрона) сразу приводит к выбросу чернил (ответу моторного нейрона). Это и есть долговременная память.

На рис. 51 показано, как происходит перестройка синапсов во время обучения. Как мы видим, возможны и другие механизмы, например укорочение шейки шипика (синапса). Сопротивление падает, и сигнал проходит быстрее. Соответственно, сокращается и время реакции. И мы быстрее вспоминаем.

Иными словами, кратковременная память связана с образованием молекул и временными функциональными изменениями в окончаниях нейронов. А вот долговременная память возникает только в тех ситуациях, когда произошли структурные изменения в контактах между клетками. Вот почему так важно повторение ранее изученного материала. Только оно позволяет сначала накапливать много протеинкиназы А, а затем вызывать архитектурные изменения в контактах клеток. Как говорится в первой части всем известной пословицы, повторение – мать учения.

Для понимания принципиальных отличий кратковременной и долгосрочной памяти подходит следующее сравнение.

Представьте строящуюся кирпичную стену. Мы заливаем бетонирующий раствор между кирпичами. И первое время стена вроде есть, но мы легко можем ее разрушить. Потому что раствор еще жидкий. Это работа временного усиления силы синапса. А вот со временем, скажем через несколько дней, бетонирующий раствор застывает и мы получаем прочную структуру, гораздо более устойчивую к внешним воздействиям. Это уже работа белков, обеспечивающих долговременную память. Они поменяли архитектуру связей.

Рис. 51. Механизмы запоминания и повышения эффективности синапса

Вдумайтесь, Кэндел показал, что для запоминания информации достаточно всего трех нейронов!

Это просто феноменально. А теперь самое важное. Существует ряд белков, категорически необходимых для обеспечения механизмов научения и памяти.

Это белки BDNF, DC0, Leo и CaMKII и другие. Гены, управляющие синтезом этих белков, имеют такие же названия. К примеру, ген BDNF является трофическим фактором роста. О факторах роста я уже упоминал. Белки, синтезируемые под контролем этого гена, обеспечивают нормальный рост нервных окончаний. И, к сожалению или к счастью, у этого гена есть разные формы. Так, встречаются формы, повышающие риск развития болезни Альцгеймера, но встречаются и варианты, которые, наоборот, позволяют мозгу эффективно строить новые контакты. Можно сдать генетический тест и определить вашу форму гена BDNF.

Понимаете, к чему идет разговор? Кардинально поменять память можно, только если генетически модифицировать нервную систему. Но кто готов рискнуть?

Нет, это, конечно, не значит, что, если у человека определенная форма этого гена (или каких-то других), он обязательно будет иметь проблемы с памятью и обучением. Что гены могут вести себя по-разному в разных организмах, мы уже узнали на примере экспериментов с мышами, которые жили в одинаковых условиях. Но все-таки согласитесь: человек с двумя здоровыми ногами имеет ряд преимуществ перед индивидом, родившимся с одной ногой.

Перейти на страницу:

Все книги серии Библиотека Гутенберга

Безумие ли?
Безумие ли?

Основная цель книги – борьба со страхом и предубеждением к больным с психическими расстройствами. С одной стороны болезни психики, «безумие» рождают необычный и противоречивый интерес, с другой – «сумасшествие» является настолько пугающим, что в общественном сознании рождается желание закрыться, удалить психически больных из жизни общества. С третьей стороны, некоторое невежество, рожденное страхом, приводит к определенным спекуляциям в этой области. Зачастую родственники больных обращаются к неврологам, психологам, а то и вовсе к экстрасенсам и шаманам, а к психиатру боятся идти. Но вовремя не оказанная помощь может привести к более худшим последствиям, чем необходимость числиться на учете. Данная книга поможет взглянуть на все эти проблемы и будет способствовать уменьшению стигматизации и предубеждений перед психическими расстройствами и психиатрией.

Александр Станиславович Граница

Медицина

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература
История Византийских императоров. От Константина Великого до Анастасия I
История Византийских императоров. От Константина Великого до Анастасия I

÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷Пятитомное сочинение А.М. Величко «История Византийских императоров» раскрывает события царствования всех монархических династий Священной Римской (Византийской) империи — от св. Константина Великого до падения Константинополя в 1453 г. Это первое комплексное исследование, в котором исторические события из политической жизни Византийского государства изображаются в их органической взаимосвязи с жизнью древней Церкви и личностью конкретных царей. В работе детально и обстоятельно изображены интереснейшие перипетии истории Византийской державы, в том числе в части межцерковных отношений Рима и Константинополя. Приводятся многочисленные события времён Вселенских Соборов, раскрываются роль и формы участия императоров в деятельности Кафолической Церкви. Сочинение снабжено портретами всех императоров Византийской империи, картами и широким справочным материалом.Для всех интересующихся историей Византии, Церкви, права и политики, а также студентов юридических и исторических факультетов.Настоящий том охватывает эпоху от Константина Великого до Анастасия I.÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷÷

Алексей Михайлович Величко

Научная литература