Что же происходит дальше. В клетке много разнообразных систем. Многие нужны для амплификации (усиления сигнала). Скажем, одна молекула может активировать несколько больших биохимических каскадов (последовательных наборов превращений). Так вот, протеинкиназа
Из-за синтеза протеинкиназы
Объем кратковременной памяти сильно ограничен: у человека это менее 10 элементов. Если воздействие не повторяется, то информация о нем сохраняется в памяти всего несколько минут. Вот почему мы вспоминали в главе про внимание формулу «5 ± 2».
Если прикосновение к сифону сопровождать ударом по хвосту много раз подряд, протеинкиназы
В некоторых случаях у окончания сенсорного нейрона появляются дополнительные отростки. Таким образом происходит архитектурная перестройка клетки. С этого момента даже легкое прикосновение к сифону (совсем слабое возбуждение сенсорного нейрона) сразу приводит к выбросу чернил (ответу моторного нейрона). Это и есть долговременная память.
На рис. 51 показано, как происходит перестройка синапсов во время обучения. Как мы видим, возможны и другие механизмы, например укорочение шейки шипика (синапса). Сопротивление падает, и сигнал проходит быстрее. Соответственно, сокращается и время реакции. И мы быстрее вспоминаем.
Иными словами, кратковременная память связана с образованием молекул и временными функциональными изменениями в окончаниях нейронов. А вот долговременная память возникает только в тех ситуациях, когда произошли структурные изменения в контактах между клетками. Вот почему так важно повторение ранее изученного материала. Только оно позволяет сначала накапливать много протеинкиназы
Для понимания принципиальных отличий кратковременной и долгосрочной памяти подходит следующее сравнение.
Представьте строящуюся кирпичную стену. Мы заливаем бетонирующий раствор между кирпичами. И первое время стена вроде есть, но мы легко можем ее разрушить. Потому что раствор еще жидкий. Это работа временного усиления силы синапса. А вот со временем, скажем через несколько дней, бетонирующий раствор застывает и мы получаем прочную структуру, гораздо более устойчивую к внешним воздействиям. Это уже работа белков, обеспечивающих долговременную память. Они поменяли архитектуру связей.
Рис. 51. Механизмы запоминания и повышения эффективности синапса
Вдумайтесь, Кэндел показал, что для запоминания информации достаточно всего трех нейронов!
Это просто феноменально. А теперь самое важное. Существует ряд белков, категорически необходимых для обеспечения механизмов научения и памяти.
Это белки
Понимаете, к чему идет разговор? Кардинально поменять память можно, только если генетически модифицировать нервную систему. Но кто готов рискнуть?
Нет, это, конечно, не значит, что, если у человека определенная форма этого гена (или каких-то других), он обязательно будет иметь проблемы с памятью и обучением. Что гены могут вести себя по-разному в разных организмах, мы уже узнали на примере экспериментов с мышами, которые жили в одинаковых условиях. Но все-таки согласитесь: человек с двумя здоровыми ногами имеет ряд преимуществ перед индивидом, родившимся с одной ногой.